Formation and Collapse of Nonaxisymmetric Protostellar Cores in Magnetic Interstellar Clouds

Glenn E. Ciolek

Department of Physics, Applied Physics, and Astronomy &
New York Center for Studies on the Origins of Life (NSCORT)
Rensselaer Polytechnic Institute
Magnetic Support of Clouds

Evidence for magnetic support of molecular clouds:
Magnetic Support of Clouds

Evidence for magnetic support of molecular clouds:

- Polarimetry.
Magnetic Support of Clouds

Hildebrand et al. (2000)
Magnetic Support of Clouds

NGC 1333 IRAS 4A (Girart, Rao, & Marrone 2006)
Magnetic Support of Clouds

Further evidence:

- Modified Chandrasekhar-Fermi method.
- Zeeman splitting.

The measured magnetic fields yield mass-to-ux ratios M_B (s_B) that are within a factor 2 below or above the critical value for gravitational collapse (Crutcher 2004).
Further evidence:

- Modified Chandrasekhar-Fermi method.
Magnetic Support of Clouds

Further evidence:

- Modified Chandrasekhar-Fermi method.
- Zeeman splitting.
Magnetic Support of Clouds

Further evidence:

- Modified Chandrasekhar-Fermi method.
- Zeeman splitting.

The measured magnetic fields yield mass-to-flux ratios $M/\Phi_B \ (= \sigma_n/B)$ that are within a factor ~ 2 below or above the critical value for gravitational collapse (Crutcher 2004).
Past decade: axisymmetric models of formation and collapse of protostellar cores in magnetically supported molecular clouds were developed.

Ciolek & Basu (2000) applied a model to the L1544 prestellar core.
- Reproduced observed density and velocity profiles (Williams et al. 1999, Caselli et al. 2002)
- Predicted magnetic field strength, confirmed by Zeeman measurements (Crutcher & Troland 2000).

Problem: clouds and cores usually not axisymmetric.
Past decade: axisymmetric models of formation and collapse of protostellar cores in magnetically supported molecular clouds were developed.

Ciolek & Basu (2000) applied a model to the L1544 prestellar core.
Past decade: axisymmetric models of formation and collapse of protostellar cores in magnetically supported molecular clouds were developed.

Ciolek & Basu (2000) applied a model to the L1544 prestellar core.

- Reproduced observed density and velocity profiles (Williams et al. 1999, Caselli et al. 2002)
Past decade: axisymmetric models of formation and collapse of protostellar cores in magnetically supported molecular clouds were developed.

Ciolek & Basu (2000) applied a model to the L1544 prestellar core.

- Reproduced observed density and velocity profiles (Williams et al. 1999, Caselli et al. 2002)
- Predicted magnetic field strength, confirmed by Zeeman measurements (Crutcher & Troland 2000).
Past decade: axisymmetric models of formation and collapse of protostellar cores in magnetically supported molecular clouds were developed.

Ciolek & Basu (2000) applied a model to the L1544 prestellar core.

- Reproduced observed density and velocity profiles (Williams et al. 1999, Caselli et al. 2002)
- Predicted magnetic field strength, confirmed by Zeeman measurements (Crutcher & Troland 2000).

Problem: clouds and cores usually not axisymmetric.
L1544 Prestellar Core (Williams et al. 1999)
Dimensionless initial mass-to-flux ratio for a self-gravitating object:

\[
\mu_0 \equiv \frac{(M/\Phi_B)_0}{(M/\Phi_B)_{\text{crit}}},
\]

where \((M/\Phi_B)_{\text{crit}} \simeq 0.17/\sqrt{G}\) is the critical mass-to-flux ratio.
Dimensionless initial mass-to-flux ratio for a self-gravitating object:

\[\mu_0 \equiv \frac{(M/\Phi_B)_0}{(M/\Phi_B)_{\text{crit}}} \]

where \((M/\Phi_B)_{\text{crit}} \simeq 0.17/\sqrt{G}\) is the critical mass-to-flux ratio.

\[\mu_0 < 1 \Rightarrow \text{Subcritical, magnetically supported.} \]
Dimensionless initial mass-to-flux ratio for a self-gravitating object:

\[
\mu_0 \equiv \frac{(M/\Phi_B)_0}{(M/\Phi_B)_{\text{crit}}},
\]

where \((M/\Phi_B)_{\text{crit}} \simeq 0.17/\sqrt{G}\) is the critical mass-to-flux ratio.

\(\mu_0 < 1 \Rightarrow \text{Subcritical, magnetically supported.}\)

\(\mu_0 > 1 \Rightarrow \text{Supercritical, gravitational collapse.}\)
Dimensionless neutral-ion collision time:

\[
\tilde{\tau}_{ni,0} \equiv \frac{\text{neutral} - \text{ion collision time}}{\text{gravitational contraction timescale}}
\]

\[
= 0.26 \left(\frac{10^3 \text{ cm}^{-3}}{n_n} \right)^{1/2} \left(\frac{10^{-7}}{x_i} \right),
\]

where \(x_i = n_i/n_n \) is the degree of ionization.
Dimensionless neutral-ion collision time:

\[\tilde{\tau}_{ni,0} \equiv \frac{\text{neutral - ion collision time}}{\text{gravitational contraction timescale}} \]

\[= 0.26 \left(\frac{10^3 \text{ cm}^{-3}}{n_n} \right)^{1/2} \left(\frac{10^{-7}}{x_i} \right) , \]

where \(x_i = n_i/n_n \) is the degree of ionization.

\[\tilde{\tau}_{ni,0} > 1 \Rightarrow \text{Ineffective neutral-ion coupling.} \]
Dimensionless neutral-ion collision time:

\[\tilde{\tau}_{ni,0} \equiv \frac{\text{neutral – ion collision time}}{\text{gravitational contraction timescale}} \]

\[\equiv 0.26 \left(\frac{10^3 \text{ cm}^{-3}}{n_n} \right)^{1/2} \left(\frac{10^{-7}}{x_i} \right) \]

where \(x_i = n_i/n_n \) is the degree of ionization.

\[\tilde{\tau}_{ni,0} > 1 \Rightarrow \text{Ineffective neutral-ion coupling.} \]

\[\tilde{\tau}_{ni,0} < 1 \Rightarrow \text{Some coupling of neutrals with ions & magnetic field.} \]
Dimensionless neutral-ion collision time:

\[\tilde{\tau}_{ni,0} \equiv \frac{\text{neutral } - \text{ ion collision time}}{\text{gravitational contraction timescale}} \]

\[= 0.26 \left(\frac{10^3 \text{ cm}^{-3}}{n_n} \right)^{1/2} \left(\frac{10^{-7}}{x_i} \right) , \]

where \(x_i = n_i/n_n \) is the degree of ionization.

\[\tilde{\tau}_{ni,0} > 1 \Rightarrow \text{Ineffective neutral-ion coupling.} \]

\[\tilde{\tau}_{ni,0} < 1 \Rightarrow \text{Some coupling of neutrals with ions & magnetic field.} \]

For typical cloud conditions, \(\tilde{\tau}_{ni,0} \approx 0.2 \).
Modeling Nonaxisymmetric Collapse

Model Cloud Schematic

\[Z(x,y) \]

\[P_{\text{ext}} \]

\(B \)
Modeling Nonaxisymmetric Collapse

We numerically integrate the coupled nonlinear partial differential equations for the system of neutral and ion fluids, and the magnetic field in Cartesian geometry. These include:

- Continuity of mass.
Modeling Nonaxisymmetric Collapse

We numerically integrate the coupled nonlinear partial differential equations for the system of neutral and ion fluids, and the magnetic field in Cartesian geometry. These include:

- Continuity of mass.
- Force equations of neutrals and ions.
Modeling Nonaxisymmetric Collapse

We numerically integrate the coupled nonlinear partial differential equations for the system of neutral and ion fluids, and the magnetic field in Cartesian geometry. These include:

- Continuity of mass.
- Force equations of neutrals and ions.
- Maxwell’s equations.
Modeling Nonaxisymmetric Collapse

We numerically integrate the coupled nonlinear partial differential equations for the system of neutral and ion fluids, and the magnetic field in Cartesian geometry. These include:

- Continuity of mass.
- Force equations of neutrals and ions.
- Maxwell’s equations.
- Poisson’s equation.
Modeling Nonaxisymmetric Collapse

We numerically integrate the coupled nonlinear partial differential equations for the system of neutral and ion fluids, and the magnetic field in Cartesian geometry. These include:

- Continuity of mass.
- Force equations of neutrals and ions.
- Maxwell’s equations.
- Poisson’s equation.

Assume small-amplitude perturbation δf for any physical variable f in the system of equations governing the evolution of a model cloud:

$$\delta f(x, y, t) \propto \exp(i[k_x x + k_y y - \omega t]) .$$
Linearized and Fourier-Analyzed System

Assume small-amplitude perturbation δf for any physical variable f in the system of equations governing the evolution of a model cloud:

$$\delta f(x, y, t) \propto \exp(i[k_x x + k_y y - \omega t]) .$$

Resulting dispersion relation can be solved for the complex frequency $\omega(k_x, k_y)$.
Linearized and Fourier-Analyzed System

Assume small-amplitude perturbation δf for any physical variable f in the system of equations governing the evolution of a model cloud:

$$
\delta f(x, y, t) \propto \exp(i [k_x x + k_y y - \omega t])
$$

Resulting dispersion relation can be solved for the complex frequency $\omega(k_x, k_y)$.

Gravitationally unstable modes exist if $\Re[\omega]$ is positive. The growth time for the instability is

$$
\tau_g = \frac{1}{\Re[\omega]}.
$$
Timescale for Gravitational Instability

\[\tilde{\tau}_{\text{ni,0}} = 0.2 \]

\[\mu_0 = 0.5, 0.8, 1, 1.1, 2 \]

\[\tau_g \]

\[\lambda \]
Lengthscale of Maximum Growth Rate $\lambda_{g,m}$
Numerical Simulations of Nonaxisymmetric Core Formation
Dynamical Infall of Protostellar Cores

Dynamical Infall of Protostellar Cores

Dynamical Infall of Protostellar Cores

Summary

- We have developed models of protostellar core formation and nonaxisymmetric collapse in magnetic interstellar clouds.
Summary

- We have developed models of protostellar core formation and nonaxisymmetric collapse in magnetic interstellar clouds.
- From a linear analysis of the models, determined the lengthscale of maximum gravitational instability $\lambda_{g,m}$ and its dependence on the parameter μ_0. $\lambda_{g,m}$ has a resonance for clouds near the critical state $\mu_0 \sim 1$.
Summary

- We have developed models of protostellar core formation and nonaxisymmetric collapse in magnetic interstellar clouds.
- From a linear analysis of the models, determined the lengthscale of maximum gravitational instability \(\lambda_{g,m} \) and its dependence on the parameter \(\mu_0 \). \(\lambda_{g,m} \) has a resonance for clouds near the critical state \(\mu_0 \sim 1 \).
- Nonlinear simulations verify that the fundamental fragmentation scale is \(\lambda_{g,m} \).
Summary

- We have developed models of protostellar core formation and nonaxisymmetric collapse in magnetic interstellar clouds.
- From a linear analysis of the models, determined the lengthscale of maximum gravitational instability $\lambda_{g,m}$ and its dependence on the parameter μ_0. $\lambda_{g,m}$ has a resonance for clouds near the critical state $\mu_0 \sim 1$.
- Nonlinear simulations verify that the fundamental fragmentation scale is $\lambda_{g,m}$.
- Clouds with $\mu_0 \gtrsim 2$ have cores with large-scale infall velocities that are excluded by observations.