
Embedded Control Lab Manual Ch. 3 - Programming in C:  Brief Overview

15

Chapter 3 - Programming in C

Since the heart of an embedded control system is a microcontroller, we need to be able to 
develop a program of instructions for the microcontroller to use while it controls the system in 
which it is embedded. When programs are developed on the same type of computer system on 
which they will be run, as is most commonly done, it is called native platform development. An 
example of native platform development is the use of Borland’s C/C++ to develop a program on 
an Intel PentiumII-based computer such as an IBM-compatible PC, and subsequently running the 
program on the same computer.

However, the type of program development which you will be doing in this course is known as 
cross platform development, where your laptop computer (one platform) is used to develop 
programs which are targeted to run on the SiLabs C8051F020 EVB (another platform). Thus even 
before such a program can be tested, it must be transmitted (downloaded) from the computer to the 
EVB.

For this embedded microcontroller, we will be using a programming language called 'C'. C is 
extremely flexible, and allows programmers to perform many low-level functions which are not 
easily accessible in languages like FORTRAN or Pascal. Unfortunately, the flexibility of C also 
makes it easier for the programmer to make mistakes and potentially introduce errors into their 
program. To avoid this, you should be very careful to organize your program so that it is easy to 
follow, with many comments so that you and others can find mistakes quickly. The example 
programs were written with this in mind, so that you get an idea of what well structured programs 
look like. In order to get you started in C programming, this chapter will explain the basics which 
you will need to begin. If you would like more examples, they can be found in the LITEC Tutorials
under Software: C Programming.

Brief Overview
As stated above, the C language allows many things which other languages do not, making it 

very easy to make errors. For this reason, it is suggested that you study this entire unit, including 
the tutorials if necessary, and become familiar with the specifics before beginning the labs. 
Although this may seem like a lot of work before the first lab, it will be worth your time and will 
pay off quickly.   If there is a question you have regarding the C language that is not included in 
the manual, or in the tutorials, you will probably find the answer in a C reference text.

A Simple Program in C
The following program is similar to the first programming example used in most C 

programming books and illustrates the most basic elements of a C program. 



Ch. 3 - Programming in C:  Syntax Specifics Embedded Control Lab Manual

16

#include <stdio.h>  /* include file */

main() /* begin program here */
{ /* begin program block */

printf(“Hello World\n”);

/* send Hello World 
      to the terminal */

} /* end the program block */

The first line instructs the compiler to include the header file for the standard input/output 
functions. This line indicates that some of the functions used in the file (such as printf) are not 
defined in the file, but instead are in an external library (stdio.h is a standard library header file). 
This line also illustrates the use of comments in C. Comments begin with the two character 
sequence “/*” and end with the sequence “*/”. Everything between is ignored and treated as 
comments by the compiler. Nested comments are not allowed.

The second line in the program is main(). Every C program contains a function called
main() which is the function that executes first. The next line is a curly bracket. Paired curly 
brackets are used in C to indicate a block of code. In the case above, the block belongs to the
main() statement preceding it. 

The printf line is the only statement inside the program.   In C, programs are broken up into 
functions.   The printf function sends text to the terminal.   In our case, the C8051 will send this 
text over the serial port to a “computer terminal”, where we can view it.   (You will use software 
on your laptop to simulate a terminal.) This line also illustrates that every statement in C is 
followed by a semicolon.   The compiler interprets the semicolon as the end of one statement, and 
then allows a new statement to begin.

You may also notice that the comment after the printf statement continues over more than 
one line. It is important to remember that everything between the comment markers is ignored by 
the compiler. (see Specifics of the SDCC Compiler)

The last line is the closing curly bracket which ends the block belonging to the main function. 
More examples can be found in the tutorials under the C examples section.

Syntax Specifics
There are many syntax rules in C, but there is neither room nor time here to discuss everything 

in this manual. Instead, we explain the basics, along with the specifics of the SDCC C Compiler
which are not in your textbook. Additional information about the C language can be found in the 
tutorials, and in any C reference text.



Embedded Control Lab Manual Ch. 3 - Programming in C:  Syntax Specifics

17

Declarations
One thing which was distinctly missing from the first example program was a variable. The 

type of variables available with the SDCC C Compiler for the C8051 microcontroller and their 
declaration types are listed below in Table 3.1:

Table 3.1 - SDCC C Compiler  variable types

Typea

a. The items in parentheses are not required, but are implied by the definition. We recommend 
that you state these definitions explicitly to avoid errors due to misdefinition.

Size (bytes) Smallest Value Largest Value

integer
(unsigned) char 1 0 255
signed char 1 -128 127
(signed) short 2 -32768 32767
unsigned short 2 0 65535
(signed) int 2 -32768 32767
unsigned int 2 0 65535
(signed) long 4 -2147483648 2147483647
unsigned long 4 0 4294967295

floating point
float 4 1.2 x 10-38 1.2 x 1038

SDCC specific
bit 1/8 = 1 bit 0 1
sbit 1/8 = 1 bit 0 1

The format for declaring a variable in a C program is as follows:
<type> variablename;

For example, the line
int i;

would declare an integer variable i. Although there are a large variety of variable types 
available, it is important to realize that the larger the size of the data type, the more time will be 
required by the C8051 to make the calculations.   Increased calculation time is also an important 
consideration when using floating-point variables. It is suggested that in the interest of keeping 
programs small and efficient, you should not use floating point numbers unless absolutely 
necessary.



Ch. 3 - Programming in C:  Syntax Specifics Embedded Control Lab Manual

18

Repetitive Structures
Computers are very useful when repeating a specific task, and almost every program utilizes 

this capability. The repetitive structures for,   while, and do..while are all offered by C. 

for Loops
The most common of looping structures is the for loop, which looks like this

for(initialize_statement; condition; increment){
...

}

In the example above, the for loop will perform the “initialize_statement” one time 
before commencing the loop. The “condition” will then be checked to make sure that it is true 
(non-zero). As long as the “condition” is true the statements within the loop block will be 
performed. After each iteration of the loop, the increment statement is performed. For example:

for(i=0; i<10; i++) {
display(i);

}

The statement above will initially set i equal to zero, and then call a user-defined function 
named display()10 times. Each time through the loop, the value of i is incremented by one. 
After the tenth time through, i is set to 10, and the for loop is ended since i is not less than ten.

while Loops
Another frequently used loop structure is the while loop, which follows this format

while(condition){
...

}

When a while loop is encountered, the condition given in parenthesis is evaluated. If the 
condition is true (evaluates to non-zero), the statements inside the braces are executed. After the 
last of these statements is executed, the condition is evaluated again, and the process is repeated. 
When the condition is false (evaluates to zero), the statements inside the braces are skipped over, 
and execution continues after the closing brace.   As an example, consider the following:

i = 0;
while (i<10) {

i++;
 display(i);
}



Embedded Control Lab Manual Ch. 3 - Programming in C:  Syntax Specifics

19

The above while loop will give the same results as the preceding example given with the for
loop. The variable i is first initialized to zero. When the while is encountered in the next line, 
the computer checks to see if i is less than 10. Since i begins the loop with the value 0 (which is 
less than ten), the statements inside the braces will be executed. The first line in the loop, i++,
increments i by 1 and is equivalent to i=i+1. The second line calls a function named display
with the current value of i passed as a parameter. After display is called, the computer returns 
to the while statement and checks the condition (i < 10). Since after the first iteration of the 
loop the value of i is 1, the condition (i < 10) evaluates to logical TRUE or equivalently “1”, 
the loop will again be executed. The looping will continue until i equals 10 when the condition (i 
< 10) will evaluate as being false. The program will then skip over all the statements within the 
braces of the while construct, and proceed to execute the next statement following the closing 
brace “}”.

Arrays
It may be necessary to store a list or table of values of the same type that you want to associate 

in some way. An array can be used to do this. An array is a group of memory locations all of the 
same name and data type. Each memory location in the array is called an element and is numbered 
with the first element as number “0”. Note: Be aware, though, that arrays can quickly use up the 
available variable space, and the compiler does not necessarily check this potential problem. The 
array is declared with the type of data to be stored in the array as follows:

<type> arrayname[maxsize];

For example, the lines
int values[10];
float timer[60]; /* floating point isn’t available with our compiler */

would declare an array named values that can store up to ten integers (values[0].... values[9]) 
and an array named timer that can store up to sixty floating point values (timer[0].... timer[59]). 
The array can be initially filled with values when it is declared, or it can later be filled with data by 
the program as follows:
int c[5]={23, 10, 35, 2, 17};   /* c[0]...c[4] is filled with listed values */
int f[5]={0};                   /* f[0]...f[4] is filled with zeros */
for (i=0;i<=4;i++)

f[i]=i;                    /* fills the elements of f[0]..f[4] with 0..4 */

Arrays can also have multiple dimensions. A simple example is an array with multiple rows 
and columns. These arrays can also be initialized and filled as follows:
int data[3][10]=( {0},{0} );     /* initialized data to have three rows and ten
                                    columns filled with zeros */
data[0][5]=26;           /* puts the value 26 into the element at row 0, column 5 */
data[2][9]=5;         /* puts the value 5 into the element at row 2, column 9 */



Ch. 3 - Programming in C:  Syntax Specifics Embedded Control Lab Manual

20

Operators
In addition to a full complement of keywords and functions, C also includes a full range of 

operators. Operators usually have two arguments, and the symbol between them performs an 
operation on the two arguments, replacing them with the new value. You are probably most 
familiar with the mathematical operators such as + and -, but you may not be familiar with the 
bitwise and logical operators which are used in C. Table 3.2 - Table 3.7 list some of the different 
types of operators available. The operators are also listed in the order of precedence in Table 3.8. 
Just as in algebra where multiplication precedes addition, all C operators obey a precedence which 
is summarized in table Table 3.8.

Mathematical
The symbols used for many of the C mathematical operators are identical to the symbols for 

standard mathematical operators, e.g., add “+”, subtract “-”, and divide “/”. Table 3.2 lists the 
mathematical operators.

Table 3.2 - Mathematical operators

operator description
* multiplication
/ division
% mod (remainder)
+ addition
- subtraction

 

Relational, Equality, and Logical
The C language offers a full range of control structures including if..else, while, 

do..while, and switch.   Most of these structures should be familiar from previous computing 
classes, so the concepts are left to a reference text on C. In C, remember that any non-zero value is 
true, and a value of zero is false. Relational, equality, and logical operators are used for tests in 
control structures, and are shown in Table 3.3. All operators in this list have two arguments (one 
on each side of the operator).

Table 3.3 - Relational, equality, and logical operators

operator description operator description
< less than == equal to
> greater than != not equal to
<= less than or equal to || logical OR
>= greater than or equal to && logical AND



Embedded Control Lab Manual Ch. 3 - Programming in C:  Syntax Specifics

21

Bitwise
C can perform some low-level operations such as bit-manipulation that are difficult with other 

programming languages. In fact, some of these bitwise functions are built into the language. Table 
3.4 summarizes the bitwise operations available in C.

Table 3.4 - 

operator description example result
& bitwise AND  0x88 & 0x0F  0x08

^ bitwise XOR  0x0F ^ 0xFF  0xF0

| bitwise OR  0xCC | 0x0F  0xCF

<< left shift  0x01 << 4  0x10

>> right shift  0x80 >> 6  0x02

Bitwise and shift operators

Table 3.5 - Truth Tables

                       X|Y=Q                      X&Y=Q

X Y Q X Y Q
0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1

Unary
Some C operators are meant to operate on one argument, usually the variable immediately 

following the operator. Table 3.6 gives a list of those operators, along with some example for 
reference purposes.

Assignment
Most mathematical and bitwise operators in the C language can be combined with an equal sign 

to create an assignment operator. For example a+=3; is a statement which will add 3 to the 
current value of a. This is a very useful shorthand notation for a=a+3;. All of the assignment 
operators have the same precedence as equals, and are listed in the precedence table.

Miscellaneous
Many of the operators in C are specific to the syntax of the C language, and bear other meanings 

depending on their operands. Table 3.7 below is a list of some miscellaneous operators which are 
specific to the C language. This table has been included only as a reference, and you may wish to 
refer to a C reference manual for complete descriptions of these operators



Table 3.6 - Unary operators

operator description example equivalent
++ post-increment j = i++; j = i;

i = i + 1;

++ pre-increment j = ++i; i = i + 1;
j = i;

-- post-decrement j = i--; j = i;
i = i - 1;

-- pre-decrement j = --i; i = i - 1;
j = i;

* pointer dereference *ptr value at a memory location 
whose address is in ptr

& reference (pointer) of &i the address of i
+ unary plus +i i

- unary minus -i the negative of i
~ ones complement ~0xFF  0x00
! logical negation !(0) (1)

Ch. 3 - Programming in C:  Syntax Specifics Embedded Control Lab Manual

22

.

Table 3.7 - Miscellaneous operators

operator description
() function call
[] array
-> pointer to structure member access
. structure member access
(type) type cast
sizeof size of type (in bytes)
?: if ? then: else
, combination statement



Embedded Control Lab Manual Ch. 3 - Programming in C:  Programming Structure Hints

23

Precedence and Associativity
All operators have a precedence and an associativity. Table 3.8 illustrates the precedence of all 

operators in the language*. Operators on the same row have equal precedence, and precedence 
decreases as you move down the table.

Table 3.8 - Operator precedence and associativity

operatorsa associativity

() [] ->. left to right
! ~ ++ -- * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= |= <<= >>= right to left
. left to right

a. This table is from Kernighan and Ritchie, The C Programming Language.

Programming Structure Hints
The C programs you develop should be written in a style that is easy for yourself and others to 

read and maintain (modify). Since issues pertaining to programming style are the topic of entire 
text books, the following are a few helpful guidelines and hints which are generally regarded as 
hallmarks of good programming style.

– Strictly follow the C style convention for the indentation of blocks of code.

– Select identifier names for C variables and functions which implicitly describe their 
functionality.

– Keep the scope of all variables as local within functions unless absolutely necessary to 
globalize their scope.

* Kernighan and Ritchie, The C Programming Language



Ch. 3 - Programming in C:  Specifics of the SDCC C Compiler Embedded Control Lab Manual

24

– As much as possible, encapsulate the functionality of chunks of code into C functions, 
i.e. adopt a modular programming style. It is especially important to avoid having 
functionally equivalent copies of code dispersed throughout a project comprising one 
or more files. If the functionality of similar chunks of code can be encapsulated into a 
single C function, not only will this result in a reduction of the number of lines of code, 
but more of the code maintenance can be isolated to solitary functions.

– Use comments liberally throughout a program. A good rule of thumb is to include a de-
scriptive comment for about every three lines of code.

Specifics of the SDCC C Compiler
The Small Device C Compiler is specifically built for programming microcontrollers including 

the 8051 series microcontroller.  SDCC is a free and open source software available for download 
to anyone.

Library Functions
As seen in the prior example programs, most of the things done in C, with the exception of low-

level functions, involve using library functions. All compilers have their own library functions, but 
they are usually very close to those defined by the ANSI standard. The SDCC C compiler is no 
exception since it includes most of the ANSI functions and contains some extensions specifically 
for the C8051. A list of useful functions is included in Appendix A - Programming Information for 
your reference.

Comments
In accordance with the ANSI standard, nested comments (comments within comments) are not 

allowed.

Definition of an Interrupt Handler Function
The SDCC C compiler will generate a function as an interrupt handler if it is defined as such 

using the interrupt keyword in the function definition. The interrupt keyword is not portable 
to most other compilers. If you wish to test compile your code on another compiler, such as 
Borland C/C++ or gcc on RCS, you will need to remove interrupt from your function 
prototypes and definitions.

Limitations of the demo version
The Silicon Labs IDE that comes with the develop kits natively supports a variety of 

microcontroller compilers, including SDCC.   Since both are available online, all code can be tested 
for compilation errors just as it would work within the lab.



Embedded Control Lab Manual Ch. 3 - Programming in C:  Specifics of the SDCC C Compiler

25

If you desire to use your knowledge form this course to include an embedded microcontroller 
in a project in IED or the MDL, you can purchase the microcontroller kit from the Computer Store 
in the VCC for $45.



Ch. 3 - Programming in C:  Specifics of the SDCC C Compiler Embedded Control Lab Manual

26



Embedded Control Lab Manual Appendix A:  C functions

117

Appendix A - Programming Information

C functions
As mentioned many times, the C language does not really support many functions intrinsic to 

the language, but allows for extensions in the C libraries. The following section outlines the most 
useful functions that are available with the SDCC C compiler. Some of the functions are ANSI C 
standard functions, and some are specific to the implementation on the C8051. Below is an outline 
of the structure of this section, along with an example of each section.

Name
lists the name of the function

Prototype
shows the prototype of the function which is necessary to know what types are used in the 

function call and what include file contains the prototype

Description
describes the use and operation of the function, including options

Portability
contains the information about the function as applied to other C compilers

Example program
a short example of how the function is called or used

Related functions
a list of other functions that are used for the same purpose or that are used with the function 

being described



Appendix A:  C functions Embedded Control Lab Manual

118

abs
Prototype

#include <stdlib.h>
int abs(number);
int number;

Description
abs returns the absolute value of an integer.

Portability
Available on most systems.

Example program
/* Absolute value test program

This program demonstrates the use of the abs function.
*/
/* Include files */
#include <stdlib.h>
main()
{

int i;
i = -19;
printf("\n The absolute value of %d is %d \n\n\n",i,

abs(i));
}

Related functions - fabs

ceil
Prototype

#include <math.h>
double ceil(Number);
double Number;

Description
ceil() is called the ceiling function.  It returns the smallest integer greater than  Number as 

a floating point number. For example, ceil(9.3) returns 10.0, and ceil(-6.7) returns -6.0.

Portability
ANSI C compatible

Example program
/* Ceiling function test program

This program demonstrates the use of the ceil function
*/
/* Include files */
#include <math.h>
main()
{

double i;
i = -17.569;
printf("\n The smallest integer greater than %f is \

 %f \n\n",i,ceil(i));
} 

Related functions -floor



Embedded Control Lab Manual Appendix A:  C functions

119

floor
Prototype

#include <math.h>

double floor(Number);
double Number;

Description
floor returns the greatest integer less than Number as a floating point number.  For example 

floor(9.3) returns 9.0, and floor(-6.7) returns -7.0.

Portability
ANSI C compatible

Example program
/* Floor function test program

This program demonstrates the use of the floor function
*/
/* Include files */
#include <math.h>
main()
{
double i;
i = 14.378;
printf("\n The smallest integer less than %f is %f \n\n",i, floor(i));
} 

Related functions -ceil



Appendix A:  C functions Embedded Control Lab Manual

120

getchar
Prototype

int getchar();
int getc(FILE *stream);

Description
Getchar  reads the next character from the terminal port and returns its value as an integer.  

Portability
Getchar is available in ANSI C, but its exact behavior is compiler dependent.

Example program
/* getchar test program

This program demonstrates the use of the getchar function.  The function waits for a character 
to be sent from the terminal, then transmits a message with the character back.
*/

main()
{

int c;

while (1)
{
   while(!(c = getchar()));
   printf("The character was %c and it's ASCII code \

is %d \n",c,c);
}

} 

Related functions
gets, putchar



Embedded Control Lab Manual Appendix A:  C functions

121

gets
Prototype

#include <string.h>

car *gets(String);
car *String;

Description
Gets will read a line of input from the terminal port and will place it in the string pointed to 

by String.

Portability
Available everywhere.

Example program
/* gets test program

This program illustrates the use of the gets function.  It will receive a line of input from 
the terminal, and return it.  It will also print out the first 40 characters in columns to illustrate 
simple string handling functions.  The printf function can only output a string of up to 80 char-
acters, so we check for a string that is too long.  If you need to output longer strings use the 
puts function instead.   */

#include <string.h>

main()
{
char String[80];
int i, length;

while (1)
{
printf("\nPlease enter a string\n");
gets(String);

length = strlen(String);

if (length <= 60)
{
printf("\nThe String is \"%s\" \n",String);

for (i=0;( (i<length) && (i<40) );i++)
printf("\t%c",String[i]);

printf("\n");
}

else
printf("\nThat string is too long, try again.\n");

}
}

Related functions
getchar, puts



Appendix A:  C functions Embedded Control Lab Manual

122

printf    {NOTE: use printf_fast_f to print float values}
Prototype

#include <stdio.h>
int printf(controlString [, arg1] . . . );
char *controlString;

Description
The formatted input and output functions are reminiscent of the days of hardcopy terminals, 

which prompted for input from the user in a specific form, and then output information, one line at 
a time.  This is a very simple method of communication in contrast to today’s interfaces that usually 
have full-screen feedback of keyboard and mouse input.  This simple interface can be used with 
the EVB because the HyperTerminal program emulates a terminal to interface with other comput-
ers.  Printf is used to send information, such as variables, that must be converted to a character 
string form before sending each character to the terminal.  To accomplish this conversion and po-
sitioning on the line, printf uses a control string, which instructs the function what types of input 
are being used and what format the output should be in.  The control string flags are listed here 
along with several examples of the usage of control strings.

When the printf function searches through the control string argument, it looks for flags in 
the string that indicate that a command follows.  There are two characters which are used: a back-
slash (\) to indicate a control command follows, and a percent sign (%) to indicate the type of the 
next  variable to send to the terminal. 
 
The control commands follow:

\n start a new line
\r send a carriage return without a line feed
\t send a tab
\ control string continues on the following line

The data types and how to print them are included below:
char %d for a decimal number, 

%x  for a hexadecimal number or %c for a single character display
signed char %d for a decimal number,

%x  for a hexadecimal number or %c for a single character display
unsigned char %u for a decimal number,

%x  for a hexadecimal number or %c for a single character display
hexadecimal %x
short int %d
int %d
long int %ld
unsigned short int %u
unsigned int %u
unsigned long int %lu
float, double                %[width].[precision]f

Portability
printf is a standard library function available on all ANSI and original C compilers.



Embedded Control Lab Manual Appendix A:  C functions

123

Example program

#include <stdio.h>

void test_printf (void)
{
  char a;
  int b;
  long c;
  unsigned char x;
  unsigned int y;
  unsigned long z;
  float f,g;

  a = 1;
  b = 12365;
  c = 0x7FFFFFFF;
  x = ’A’;
  y = 54321;
  z = 0x4A6FE00;
  f = 10.0;
  g = 22.95;

  printf("Char %d  int %d  long %ld\n", a,b,c);
  printf("Uchar %u  Uint %u  Ulong %lu\n", x,y,z);
  printf("Xchar %x  xint %x  xlong %lx\n", x,y,z);
  printf("%f != %g\n", f,g);
  printf("%4.2f != %4.2g\n", f,g);
}

Related functions
scanf
(scanf is not presently available in the SDCC compiler)



Appendix A:  C functions Embedded Control Lab Manual

124

printf_fast_f
Prototype

#include <stdio.h>
int printf_fast_f(controlString [, arg1] . . . );
char *controlString;

The printf_fast_f function has the same identical functionality as printf, with the exception that 
printf_fast_f will allow the output of floating point data types.

Example program
/* printf_fast_f

This program illustrates how to print a floating point number
*/

main()
{
float i = 4.0;

printf("The value of i is: %f", i);
}

Related functions: printf



Embedded Control Lab Manual Appendix A:  C functions

125

putchar, puts
Prototype

void putchar(Character);
int Character;

void puts(String);
char *String;

Description
Putchar sends Character to the terminal port.  Character is the ASCII code (integer) for the 

character to be sent.  Puts sends a string to the terminal port.

Portability
ANSI C compatible.

Example program
/* putchar & puts test program

This program illustrates the use of the putchar and puts functions.  The program will use putchar 
to output the ASCII characters in the range 33-125 (the printable characters), then print a message 
with the puts function.
*/

main()
{
int i;
char String[30];

/* use strcpy() to copy Done message into String */
strcpy(String,"\nDone\n\n\n\n");  puts("\n");

for (i=33;i<=126;i++)
putchar(i);

puts(String);
}

Related functions
gets, getchar



Appendix A:  C functions Embedded Control Lab Manual

126

rand
Prototype

#include <stdlib.h>
int rand(void);

Description
Returns a pseudo-random integer between 0 and 32767.  The srand() function may be used 

to seed the pseudo-random number generator before calling rand().

Portability
Available on most systems.

Example program
/* rand test program

This program illustrates the generation of 5 random numbers*/

#include<stdlib.h>

main()
{
int num,i;
for (i=0;i<5;i++)
{

num=rand();
printf("the random number=%d\n", num);

}
}

Related functions -srand

scanf
(NOT PRESENTLY AVAILABLE FOR THE SDCC COMPILER)
Prototype

#include <stdio.h>
int scanf(controlString [, pointer1] . . . );
char *controlString;

Description
Reads formatted data from stdin and writes the results to memory at the addresses given 

by the variable arguments.  Each variable argument must be a pointer to a datum of type that cor-
responds to the format of the data.

Portability
scanf is a standard library function available on all ANSI and original C compilers

Example program
#include <stdlib.h>
#include<stdio.h>
void main(void)
{
int a;
printf("Enter an integer:");
scanf("%d", &a);
printf("The value you entered is %d\n", a);
}

Related functions - printf



Embedded Control Lab Manual Appendix A:  C functions

127

srand
Prototype

#include <stdlib.h>
int srand(int val);

Description
Seed the rand() function with val.

Portability
Available on most systems.

Example program
/* srand test program

This program demonstrates how to seed the random number generator*/

#include<stdlib.h>

main()
{
int num;

srand(50);
num=rand();

}

Related functions
rand



Appendix A:  c8051.h header file Embedded Control Lab Manual

128

c8051.h header file
/*-------------------------------------------------------------------------
   Register Declarations for the Cygnal/SiLabs C8051F02x Processor Range

   Copyright (C) 2004 - Maarten Brock, sourceforge.brock@dse.nl

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with this library; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
-------------------------------------------------------------------------*/

#ifndef C8051F020_H
#define C8051F020_H

/*  BYTE Registers  */
__sfr __at (0x80) P0           ;  /* PORT 0                                   */
__sfr __at (0x81) SP           ;  /* STACK POINTER                            */
__sfr __at (0x82) DPL          ;  /* DATA POINTER - LOW BYTE                  */
__sfr __at (0x83) DPH          ;  /* DATA POINTER - HIGH BYTE                 */
__sfr __at (0x84) P4           ;  /* PORT 4                                   */
__sfr __at (0x85) P5           ;  /* PORT 5                                   */
__sfr __at (0x86) P6           ;  /* PORT 6                                   */
__sfr __at (0x87) PCON         ;  /* POWER CONTROL                            */
__sfr __at (0x88) TCON         ;  /* TIMER CONTROL                            */
__sfr __at (0x89) TMOD         ;  /* TIMER MODE                               */
__sfr __at (0x8A) TL0          ;  /* TIMER 0 - LOW BYTE                       */
__sfr __at (0x8B) TL1          ;  /* TIMER 1 - LOW BYTE                       */
__sfr __at (0x8C) TH0          ;  /* TIMER 0 - HIGH BYTE                      */
__sfr __at (0x8D) TH1          ;  /* TIMER 1 - HIGH BYTE                      */
__sfr __at (0x8E) CKCON        ;  /* CLOCK CONTROL                            */
__sfr __at (0x8F) PSCTL        ;  /* PROGRAM STORE R/W CONTROL                */
__sfr __at (0x90) P1           ;  /* PORT 1                                   */
__sfr __at (0x91) TMR3CN       ;  /* TIMER 3 CONTROL                          */
__sfr __at (0x92) TMR3RLL      ;  /* TIMER 3 RELOAD REGISTER - LOW BYTE       */
__sfr __at (0x93) TMR3RLH      ;  /* TIMER 3 RELOAD REGISTER - HIGH BYTE      */
__sfr __at (0x94) TMR3L        ;  /* TIMER 3 - LOW BYTE                       */
__sfr __at (0x95) TMR3H        ;  /* TIMER 3 - HIGH BYTE                      */
__sfr __at (0x96) P7           ;  /* PORT 7                                   */
__sfr __at (0x98) SCON         ;  /* UART0 CONTROL                            */
__sfr __at (0x98) SCON0        ;  /* UART0 CONTROL                            */
__sfr __at (0x99) SBUF         ;  /* UART0 BUFFER                             */
__sfr __at (0x99) SBUF0        ;  /* UART0 BUFFER                             */
__sfr __at (0x9A) SPI0CFG;  /* SERIAL PERIPHERAL INTERFACE 0 CONFIGURATION     */
__sfr __at (0x9B) SPI0DAT;  /* SERIAL PERIPHERAL INTERFACE 0 DATA              */
__sfr __at (0x9C) ADC1   ;  /* ADC 1 DATA                                      */
__sfr __at (0x9D) SPI0CKR;  /* SERIAL PERIPHERAL INTERFACE 0 CLOCK RATE CONTROL*/
__sfr __at (0x9E) CPT0CN       ;  /* COMPARATOR 0 CONTROL                     */



Embedded Control Lab Manual Appendix A:  c8051.h header file

129

__sfr __at (0x9F) CPT1CN       ;  /* COMPARATOR 1 CONTROL                     */
__sfr __at (0xA0) P2           ;  /* PORT 2                                   */
__sfr __at (0xA1) EMI0TC       ;  /* External Memory Timing Control           */
__sfr __at (0xA3) EMI0CF       ;  /* EMIF CONFIGURATION                       */
__sfr __at (0xA4) PRT0CF       ;  /* PORT 0 CONFIGURATION                     */
__sfr __at (0xA4) P0MDOUT      ;  /* PORT 0 OUTPUT MODE CONFIGURATION         */
__sfr __at (0xA5) PRT1CF       ;  /* PORT 1 CONFIGURATION                     */
__sfr __at (0xA5) P1MDOUT      ;  /* PORT 1 OUTPUT MODE CONFIGURATION         */
__sfr __at (0xA6) PRT2CF       ;  /* PORT 2 CONFIGURATION                     */
__sfr __at (0xA6) P2MDOUT      ;  /* PORT 2 OUTPUT MODE CONFIGURATION         */
__sfr __at (0xA7) PRT3CF       ;  /* PORT 3 CONFIGURATION                     */
__sfr __at (0xA7) P3MDOUT      ;  /* PORT 3 OUTPUT MODE CONFIGURATION         */
__sfr __at (0xA8) IE           ;  /* INTERRUPT ENABLE                         */
__sfr __at (0xA9) SADDR0       ;  /* UART0 Slave Address                      */
__sfr __at (0xAA) ADC1CN       ;  /* ADC 1 CONTROL                            */
__sfr __at (0xAB) ADC1CF       ;  /* ADC 1 CONFIGURATION                      */
__sfr __at (0xAC) AMX1SL       ;  /* ADC 1 MUX CHANNEL SELECTION              */
__sfr __at (0xAD) P3IF         ;  /* PORT 3 EXTERNAL INTERRUPT FLAGS          */
__sfr __at (0xAE) SADEN1       ;  /* UART1 Slave Address Enable               */
__sfr __at (0xAF) EMI0CN       ;  /* EXTERNAL MEMORY INTERFACE CONTROL        */
__sfr __at (0xAF) _XPAGE       ;  /* XDATA/PDATA PAGE                         */
__sfr __at (0xB0) P3           ;  /* PORT 3                                   */
__sfr __at (0xB1) OSCXCN       ;  /* EXTERNAL OSCILLATOR CONTROL              */
__sfr __at (0xB2) OSCICN       ;  /* INTERNAL OSCILLATOR CONTROL              */
__sfr __at (0xB5) P74OUT       ;  /* PORT 4 THROUGH 7 OUTPUT MODE CONFIGURATION*/
__sfr __at (0xB6) FLSCL        ;  /* FLASH MEMORY TIMING PRESCALER            */
__sfr __at (0xB7) FLACL        ;  /* FLASH ACESS LIMIT                        */
__sfr __at (0xB8) IP           ;  /* INTERRUPT PRIORITY                       */
__sfr __at (0xB9) SADEN0       ;  /* UART0 Slave Address Enable               */
__sfr __at (0xBA) AMX0CF       ;  /* ADC 0 MUX CONFIGURATION                  */
__sfr __at (0xBB) AMX0SL       ;  /* ADC 0 MUX CHANNEL SELECTION              */
__sfr __at (0xBC) ADC0CF       ;  /* ADC 0 CONFIGURATION                      */
__sfr __at (0xBD) P1MDIN       ;  /* PORT 1 Input Mode                        */
__sfr __at (0xBE) ADC0L        ;  /* ADC 0 DATA - LOW BYTE                    */
__sfr __at (0xBF) ADC0H        ;  /* ADC 0 DATA - HIGH BYTE                   */
__sfr __at (0xC0) SMB0CN       ;  /* SMBUS 0 CONTROL                          */
__sfr __at (0xC1) SMB0STA      ;  /* SMBUS 0 STATUS                           */
__sfr __at (0xC2) SMB0DAT      ;  /* SMBUS 0 DATA                             */
__sfr __at (0xC3) SMB0ADR      ;  /* SMBUS 0 SLAVE ADDRESS                    */
__sfr __at (0xC4) ADC0GTL      ;  /* ADC 0 GREATER-THAN REGISTER - LOW BYTE   */
__sfr __at (0xC5) ADC0GTH      ;  /* ADC 0 GREATER-THAN REGISTER - HIGH BYTE  */
__sfr __at (0xC6) ADC0LTL      ;  /* ADC 0 LESS-THAN REGISTER - LOW BYTE      */
__sfr __at (0xC7) ADC0LTH      ;  /* ADC 0 LESS-THAN REGISTER - HIGH BYTE     */
__sfr __at (0xC8) T2CON        ;  /* TIMER 2 CONTROL                          */
__sfr __at (0xC9) T4CON        ;  /* TIMER 4 CONTROL                          */
__sfr __at (0xCA) RCAP2L       ;  /* TIMER 2 CAPTURE REGISTER - LOW BYTE      */
__sfr __at (0xCB) RCAP2H       ;  /* TIMER 2 CAPTURE REGISTER - HIGH BYTE     */
__sfr __at (0xCC) TL2          ;  /* TIMER 2 - LOW BYTE                       */
__sfr __at (0xCD) TH2          ;  /* TIMER 2 - HIGH BYTE                      */
__sfr __at (0xCF) SMB0CR       ;  /* SMBUS 0 CLOCK RATE                       */
__sfr __at (0xD0) PSW          ;  /* PROGRAM STATUS WORD                      */
__sfr __at (0xD1) REF0CN       ;  /* VOLTAGE REFERENCE 0 CONTROL              */
__sfr __at (0xD2) DAC0L        ;  /* DAC 0 REGISTER - LOW BYTE                */
__sfr __at (0xD3) DAC0H        ;  /* DAC 0 REGISTER - HIGH BYTE               */
__sfr __at (0xD4) DAC0CN       ;  /* DAC 0 CONTROL                            */
__sfr __at (0xD5) DAC1L        ;  /* DAC 1 REGISTER - LOW BYTE                */
__sfr __at (0xD6) DAC1H        ;  /* DAC 1 REGISTER - HIGH BYTE               */
__sfr __at (0xD7) DAC1CN       ;  /* DAC 1 CONTROL                            */
__sfr __at (0xD8) PCA0CN       ;  /* PCA 0 COUNTER CONTROL                    */



Appendix A:  c8051.h header file Embedded Control Lab Manual

130

__sfr __at (0xD9) PCA0MD       ;  /* PCA 0 COUNTER MODE                       */
__sfr __at (0xDA) PCA0CPM0     ;  /* CONTROL REGISTER FOR PCA 0 MODULE 0      */
__sfr __at (0xDB) PCA0CPM1     ;  /* CONTROL REGISTER FOR PCA 0 MODULE 1      */
__sfr __at (0xDC) PCA0CPM2     ;  /* CONTROL REGISTER FOR PCA 0 MODULE 2      */
__sfr __at (0xDD) PCA0CPM3     ;  /* CONTROL REGISTER FOR PCA 0 MODULE 3      */
__sfr __at (0xDE) PCA0CPM4     ;  /* CONTROL REGISTER FOR PCA 0 MODULE 4      */
__sfr __at (0xE0) ACC          ;  /* ACCUMULATOR                              */
__sfr __at (0xE1) XBR0         ;  /* DIGITAL CROSSBAR CONFIGURATION REGISTER 0*/
__sfr __at (0xE2) XBR1         ;  /* DIGITAL CROSSBAR CONFIGURATION REGISTER 1*/
__sfr __at (0xE3) XBR2         ;  /* DIGITAL CROSSBAR CONFIGURATION REGISTER 2*/
__sfr __at (0xE4) RCAP4L       ;  /* TIMER 4 CAPTURE REGISTER - LOW BYTE      */
__sfr __at (0xE5) RCAP4H       ;  /* TIMER 4 CAPTURE REGISTER - HIGH BYTE     */
__sfr __at (0xE6) EIE1         ;  /* EXTERNAL INTERRUPT ENABLE 1              */
__sfr __at (0xE7) EIE2         ;  /* EXTERNAL INTERRUPT ENABLE 2              */
__sfr __at (0xE8) ADC0CN       ;  /* ADC 0 CONTROL                            */
__sfr __at (0xE9) PCA0L        ;  /* PCA 0 TIMER - LOW BYTE                   */
__sfr __at (0xEA) PCA0CPL0     ;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 0 - LOW 
BYTE*/
__sfr __at (0xEB) PCA0CPL1      ;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 1 - LOW 
BYTE*/
__sfr __at (0xEC) PCA0CPL2      ;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 2 - 
LOW BYTE*/
__sfr __at (0xED) PCA0CPL3      ;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 3 - 
LOW BYTE*/
__sfr __at (0xEE) PCA0CPL4      ;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 4 - 
LOW BYTE*/
__sfr __at (0xEF) RSTSRC       ;  /* RESET SOURCE                             */
__sfr __at (0xF0) B            ;  /* B REGISTER                               */
__sfr __at (0xF1) SCON1        ;  /* UART1 CONTROL                            */
__sfr __at (0xF2) SBUF1        ;  /* UART1 DATA                               */
__sfr __at (0xF3) SADDR1       ;  /* UART1 Slave Address                      */
__sfr __at (0xF4) TL4          ;  /* TIMER 4 DATA - LOW BYTE                  */
__sfr __at (0xF5) TH4          ;  /* TIMER 4 DATA - HIGH BYTE                 */
__sfr __at (0xF6) EIP1         ;  /* EXTERNAL INTERRUPT PRIORITY REGISTER 1   */
__sfr __at (0xF7) EIP2         ;  /* EXTERNAL INTERRUPT PRIORITY REGISTER 2   */
__sfr __at (0xF8) SPI0CN       ;  /* SERIAL PERIPHERAL INTERFACE 0 CONTROL    */
__sfr __at (0xF9) PCA0H        ;  /* PCA 0 TIMER - HIGH BYTE                  */
__sfr __at (0xFA) PCA0CPH0     ;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 0 - HIGH 
BYTE*/
__sfr __at (0xFB) PCA0CPH1     ;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 1 - HIGH 
BYTE*/
__sfr __at (0xFC) PCA0CPH2     ;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 2 - HIGH 
BYTE*/
__sfr __at (0xFD) PCA0CPH3     ;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 3 - HIGH 
BYTE*/
__sfr __at (0xFE) PCA0CPH4     ;/* CAPTURE/COMPARE REGISTER FOR PCA 0 MODULE 4 - HIGH 
BYTE*/
__sfr __at (0xFF) WDTCN        ;  /* WATCHDOG TIMER CONTROL                   */

/*  WORD/DWORD Registers  */

__sfr16 __at (0x8C8A) TMR0     ;  /* TIMER 0 COUNTER                          */
__sfr16 __at (0x8D8B) TMR1     ;  /* TIMER 1 COUNTER                          */
__sfr16 __at (0xCDCC) TMR2     ;  /* TIMER 2 COUNTER                          */
__sfr16 __at (0xCBCA) RCAP2    ;  /* TIMER 2 CAPTURE REGISTER WORD            */
__sfr16 __at (0x9594) TMR3     ;  /* TIMER 3 COUNTER                          */
__sfr16 __at (0x9392) TMR3RL   ;  /* TIMER 3 CAPTURE REGISTER WORD            */
__sfr16 __at (0xF5F4) TMR4     ;  /* TIMER 4 COUNTER                          */



Embedded Control Lab Manual Appendix A:  c8051.h header file

131

__sfr16 __at (0xE5E4) RCAP4    ;  /* TIMER 4 CAPTURE REGISTER WORD            */
__sfr16 __at (0xBFBE) ADC0     ;  /* ADC 0 DATA WORD                          */
__sfr16 __at (0xC5C4) ADC0GT   ;  /* ADC 0 GREATER-THAN REGISTER WORD         */
__sfr16 __at (0xC7C6) ADC0LT   ;  /* ADC 0 LESS-THAN REGISTER WORD            */
__sfr16 __at (0xD3D2) DAC0     ;  /* DAC 0 REGISTER WORD                      */
__sfr16 __at (0xD6D5) DAC1     ;  /* DAC 1 REGISTER WORD                      */
__sfr16 __at (0xF9E9) PCA0     ;  /* PCA COUNTER                              */
__sfr16 __at (0xFAEA) PCA0CP0  ;  /* PCA CAPTURE 0 WORD                       */
__sfr16 __at (0xFBEB) PCA0CP1  ;  /* PCA CAPTURE 1 WORD                       */
__sfr16 __at (0xFCEC) PCA0CP2  ;  /* PCA CAPTURE 2 WORD                       */
__sfr16 __at (0xFDED) PCA0CP3  ;  /* PCA CAPTURE 3 WORD                       */
__sfr16 __at (0xFEEE) PCA0CP4  ;  /* PCA CAPTURE 4 WORD                       */

/*  BIT Registers  */

/*  P0  0x80 */
__sbit __at (0x80) P0_0        ;
__sbit __at (0x81) P0_1        ;
__sbit __at (0x82) P0_2        ;
__sbit __at (0x83) P0_3        ;
__sbit __at (0x84) P0_4        ;
__sbit __at (0x85) P0_5        ;
__sbit __at (0x86) P0_6        ;
__sbit __at (0x87) P0_7        ;

/*  TCON  0x88 */
__sbit __at (0x88) IT0         ;  /* EXT. INTERRUPT 0 TYPE                    */
__sbit __at (0x89) IE0         ;  /* EXT. INTERRUPT 0 EDGE FLAG               */
__sbit __at (0x8A) IT1         ;  /* EXT. INTERRUPT 1 TYPE                    */
__sbit __at (0x8B) IE1         ;  /* EXT. INTERRUPT 1 EDGE FLAG               */
__sbit __at (0x8C) TR0         ;  /* TIMER 0 ON/OFF CONTROL                   */
__sbit __at (0x8D) TF0         ;  /* TIMER 0 OVERFLOW FLAG                    */
__sbit __at (0x8E) TR1         ;  /* TIMER 1 ON/OFF CONTROL                   */
__sbit __at (0x8F) TF1         ;  /* TIMER 1 OVERFLOW FLAG                    */

/*  P1  0x90 */
__sbit __at (0x90) P1_0        ;
__sbit __at (0x91) P1_1        ;
__sbit __at (0x92) P1_2        ;
__sbit __at (0x93) P1_3        ;
__sbit __at (0x94) P1_4        ;
__sbit __at (0x95) P1_5        ;
__sbit __at (0x96) P1_6        ;
__sbit __at (0x97) P1_7        ;

/*  SCON  0x98 */
__sbit __at (0x98) RI          ;  /* SCON.0 - RECEIVE INTERRUPT FLAG          */
__sbit __at (0x98) RI0         ;  /* SCON.0 - RECEIVE INTERRUPT FLAG          */
__sbit __at (0x99) TI          ;  /* SCON.1 - TRANSMIT INTERRUPT FLAG         */
__sbit __at (0x99) TI0         ;  /* SCON.1 - TRANSMIT INTERRUPT FLAG         */
__sbit __at (0x9A) RB8         ;  /* SCON.2 - RECEIVE BIT 8                   */
__sbit __at (0x9A) RB80        ;  /* SCON.2 - RECEIVE BIT 8                   */
__sbit __at (0x9B) TB8         ;  /* SCON.3 - TRANSMIT BIT 8                  */
__sbit __at (0x9B) TB80        ;  /* SCON.3 - TRANSMIT BIT 8                  */
__sbit __at (0x9C) REN         ;  /* SCON.4 - RECEIVE ENABLE                  */
__sbit __at (0x9C) REN0        ;  /* SCON.4 - RECEIVE ENABLE                  */
__sbit __at (0x9D) SM2 ;  /* SCON.5 - MULTIPROCESSOR COMMUNICATION ENABLE     */
__sbit __at (0x9D) SM20;  /* SCON.5 - MULTIPROCESSOR COMMUNICATION ENABLE     */



Appendix A:  c8051.h header file Embedded Control Lab Manual

132

__sbit __at (0x9D) MCE0;  /* SCON.5 - MULTIPROCESSOR COMMUNICATION ENABLE     */
__sbit __at (0x9E) SM1         ;  /* SCON.6 - SERIAL MODE CONTROL BIT 1       */
__sbit __at (0x9E) SM10        ;  /* SCON.6 - SERIAL MODE CONTROL BIT 1       */
__sbit __at (0x9F) SM0         ;  /* SCON.7 - SERIAL MODE CONTROL BIT 0       */
__sbit __at (0x9F) SM00        ;  /* SCON.7 - SERIAL MODE CONTROL BIT 0       */
__sbit __at (0x9F) S0MODE      ;  /* SCON.7 - SERIAL MODE CONTROL BIT 0       */

/*  P2  0xA0 */
__sbit __at (0xA0) P2_0        ;
__sbit __at (0xA1) P2_1        ;
__sbit __at (0xA2) P2_2        ;
__sbit __at (0xA3) P2_3        ;
__sbit __at (0xA4) P2_4        ;
__sbit __at (0xA5) P2_5        ;
__sbit __at (0xA6) P2_6        ;
__sbit __at (0xA7) P2_7        ;

/*  IE  0xA8 */
__sbit __at (0xA8) EX0         ;  /* EXTERNAL INTERRUPT 0 ENABLE              */
__sbit __at (0xA9) ET0         ;  /* TIMER 0 INTERRUPT ENABLE                 */
__sbit __at (0xAA) EX1         ;  /* EXTERNAL INTERRUPT 1 ENABLE              */
__sbit __at (0xAB) ET1         ;  /* TIMER 1 INTERRUPT ENABLE                 */
__sbit __at (0xAC) ES0         ;  /* SERIAL PORT 0 INTERRUPT ENABLE           */
__sbit __at (0xAC) ES          ;  /* SERIAL PORT 0 INTERRUPT ENABLE           */
__sbit __at (0xAD) ET2         ;  /* TIMER 2 INTERRUPT ENABLE                 */
__sbit __at (0xAF) EA          ;  /* GLOBAL INTERRUPT ENABLE                  */

/*  P3  0xB0 */
__sbit __at (0xB0) P3_0        ;
__sbit __at (0xB1) P3_1        ;
__sbit __at (0xB2) P3_2        ;
__sbit __at (0xB3) P3_3        ;
__sbit __at (0xB4) P3_4        ;
__sbit __at (0xB5) P3_5        ;
__sbit __at (0xB6) P3_6        ;
__sbit __at (0xB7) P3_7        ;

/*  IP  0xB8 */
__sbit __at (0xB8) PX0         ;  /* EXTERNAL INTERRUPT 0 PRIORITY            */
__sbit __at (0xB9) PT0         ;  /* TIMER 0 PRIORITY                         */
__sbit __at (0xBA) PX1         ;  /* EXTERNAL INTERRUPT 1 PRIORITY            */
__sbit __at (0xBB) PT1         ;  /* TIMER 1 PRIORITY                         */
__sbit __at (0xBC) PS0         ;  /* SERIAL PORT PRIORITY                     */
__sbit __at (0xBC) PS          ;  /* SERIAL PORT PRIORITY                     */
__sbit __at (0xBD) PT2         ;  /* TIMER 2 PRIORITY                         */

/*  SMB0CN  0xC0 */
__sbit __at (0xC0) SMBTOE      ;  /* SMBUS 0 TIMEOUT ENABLE                   */
__sbit __at (0xC1) SMBFTE      ;  /* SMBUS 0 FREE TIMER ENABLE                */
__sbit __at (0xC2) AA          ;  /* SMBUS 0 ASSERT/ACKNOWLEDGE FLAG          */
__sbit __at (0xC3) SI          ;  /* SMBUS 0 INTERRUPT PENDING FLAG           */
__sbit __at (0xC4) STO         ;  /* SMBUS 0 STOP FLAG                        */
__sbit __at (0xC5) STA         ;  /* SMBUS 0 START FLAG                       */
__sbit __at (0xC6) ENSMB       ;  /* SMBUS 0 ENABLE                           */
__sbit __at (0xC7) BUSY        ;  /* SMBUS 0 BUSY                             */

/*  T2CON  0xC8 */
__sbit __at (0xC8) CPRL2       ;  /* CAPTURE OR RELOAD SELECT                 */
__sbit __at (0xC9) CT2         ;  /* TIMER OR COUNTER SELECT                  */



Embedded Control Lab Manual Appendix A:  c8051.h header file

133

__sbit __at (0xCA) TR2         ;  /* TIMER 2 ON/OFF CONTROL                   */
__sbit __at (0xCB) EXEN2       ;  /* TIMER 2 EXTERNAL ENABLE FLAG             */
__sbit __at (0xCC) TCLK        ;  /* TRANSMIT CLOCK FLAG                      */
__sbit __at (0xCD) RCLK        ;  /* RECEIVE CLOCK FLAG                       */
__sbit __at (0xCE) EXF2        ;  /* EXTERNAL FLAG                            */
__sbit __at (0xCF) TF2         ;  /* TIMER 2 OVERFLOW FLAG                    */

/*  PSW  0xD0 */
__sbit __at (0xD0) P           ;  /* ACCUMULATOR PARITY FLAG                  */
__sbit __at (0xD1) F1          ;  /* USER FLAG 1                              */
__sbit __at (0xD2) OV          ;  /* OVERFLOW FLAG                            */
__sbit __at (0xD3) RS0         ;  /* REGISTER BANK SELECT 0                   */
__sbit __at (0xD4) RS1         ;  /* REGISTER BANK SELECT 1                   */
__sbit __at (0xD5) F0          ;  /* USER FLAG 0                              */
__sbit __at (0xD6) AC          ;  /* AUXILIARY CARRY FLAG                     */
__sbit __at (0xD7) CY          ;  /* CARRY FLAG                               */

/*  PCA0CN  0xD8H */
__sbit __at (0xD8) CCF0        ;  /* PCA 0 MODULE 0 INTERRUPT FLAG            */
__sbit __at (0xD9) CCF1        ;  /* PCA 0 MODULE 1 INTERRUPT FLAG            */
__sbit __at (0xDA) CCF2        ;  /* PCA 0 MODULE 2 INTERRUPT FLAG            */
__sbit __at (0xDB) CCF3        ;  /* PCA 0 MODULE 3 INTERRUPT FLAG            */
__sbit __at (0xDC) CCF4        ;  /* PCA 0 MODULE 4 INTERRUPT FLAG            */
__sbit __at (0xDE) CR          ;  /* PCA 0 COUNTER RUN CONTROL BIT            */
__sbit __at (0xDF) CF          ;  /* PCA 0 COUNTER OVERFLOW FLAG              */

/*  ADC0CN  0xE8H */
__sbit __at (0xE8) ADLJST      ;  /* ADC 0 RIGHT JUSTIFY DATA BIT             */
__sbit __at (0xE8) AD0LJST     ;  /* ADC 0 RIGHT JUSTIFY DATA BIT             */
__sbit __at (0xE9) ADWINT      ;  /* ADC 0 WINDOW COMPARE INTERRUPT FLAG      */
__sbit __at (0xE9) AD0WINT     ;  /* ADC 0 WINDOW COMPARE INTERRUPT FLAG      */
__sbit __at (0xEA) ADSTM0      ;  /* ADC 0 START OF CONVERSION MODE BIT 0     */
__sbit __at (0xEA) AD0CM0      ;  /* ADC 0 START OF CONVERSION MODE BIT 0     */
__sbit __at (0xEB) ADSTM1      ;  /* ADC 0 START OF CONVERSION MODE BIT 1     */
__sbit __at (0xEB) AD0CM1      ;  /* ADC 0 START OF CONVERSION MODE BIT 1     */
__sbit __at (0xEC) ADBUSY      ;  /* ADC 0 BUSY FLAG                          */
__sbit __at (0xEC) AD0BUSY     ;  /* ADC 0 BUSY FLAG                          */
__sbit __at (0xED) ADCINT      ;  /* ADC 0 CONVERISION COMPLETE INTERRUPT FLAG*/
__sbit __at (0xED) AD0INT      ;  /* ADC 0 CONVERISION COMPLETE INTERRUPT FLAG*/
__sbit __at (0xEE) ADCTM       ;  /* ADC 0 TRACK MODE                         */
__sbit __at (0xEE) AD0TM       ;  /* ADC 0 TRACK MODE                         */
__sbit __at (0xEF) ADCEN       ;  /* ADC 0 ENABLE                             */
__sbit __at (0xEF) AD0EN       ;  /* ADC 0 ENABLE                             */

/*  SPI0CN  0xF8H */
__sbit __at (0xF8) SPIEN       ;  /* SPI 0 SPI ENABLE                         */
__sbit __at (0xF9) MSTEN       ;  /* SPI 0 MASTER ENABLE                      */
__sbit __at (0xFA) SLVSEL      ;  /* SPI 0 SLAVE SELECT                       */
__sbit __at (0xFB) TXBSY       ;  /* SPI 0 TX BUSY FLAG                       */
__sbit __at (0xFC) RXOVRN      ;  /* SPI 0 RX OVERRUN FLAG                    */
__sbit __at (0xFD) MODF        ;  /* SPI 0 MODE FAULT FLAG                    */
__sbit __at (0xFE) WCOL        ;  /* SPI 0 WRITE COLLISION FLAG               */
__sbit __at (0xFF) SPIF        ;  /* SPI 0 INTERRUPT FLAG  */

/* Predefined SFR Bit Masks */

#define PCON_IDLE         0x01    /* PCON                                */
#define PCON_STOP         0x02    /* PCON                                */



Appendix A:  c8051.h header file Embedded Control Lab Manual

134

#define PCON_SMOD0        0x80    /* PCON                                */
#define TF3               0x80    /* TMR3CN                              */
#define CPFIF             0x10    /* CPTnCN                              */
#define CPRIF             0x20    /* CPTnCN                              */
#define CPOUT             0x40    /* CPTnCN                              */
#define TR4               0x04    /* T4CON                               */
#define TF4               0x80    /* T4CON                               */
#define ECCF              0x01    /* PCA0CPMn                            */
#define PWM               0x02    /* PCA0CPMn                            */
#define TOG               0x04    /* PCA0CPMn                            */
#define MAT               0x08    /* PCA0CPMn                            */
#define CAPN              0x10    /* PCA0CPMn                            */
#define CAPP              0x20    /* PCA0CPMn                            */
#define ECOM              0x40    /* PCA0CPMn                            */
#define PWM16             0x80    /* PCA0CPMn                            */
#define PORSF             0x02    /* RSTSRC                              */
#define SWRSF             0x10    /* RSTSRC                              */
#define RI1               0x01    /* SCON1                               */
#define TI1               0x02    /* SCON1                               */
#define RB81              0x04    /* SCON1                               */
#define TB81              0x08    /* SCON1                               */
#define REN1              0x10    /* SCON1                               */
#define SM21              0x20    /* SCON1                               */
#define SM11              0x40    /* SCON1                               */
#define SM01              0x80    /* SCON1                               */

#endif




