Motivation

- Communicate sensor data through a thick steel barrier without making physical penetrations (holes) through the barrier
 - Holes reduce integrity of the wall
 - Shielding effect makes electromagnetic "wireless" communication techniques ineffective
- Power the sensors from "outside" the barrier
 - No batteries to replace
 - Extended lifetime without servicing

Approach

- Use ultrasound for both communication and power delivery
 - Propagates readily through steel
 - Use power harvesting to produce electrical power from received acoustic power
- Use digital communication techniques
 - Convert sensor data into a binary stream (1's and 0's)
 - Multiplex digital data from multiple sensors into a single stream
 - Generate the ultrasound on the "outside"

System Concept

- Outside Ultrasound Transceiver
- "Inside" Ultrasound Transceiver
- Steel Wall
- Sensor
- Control & Data
- USB

Communication Technique

- Continuous Wave (CW) acoustic signal is applied using the outside transducer
 - CW is amplitude modulated to convey data from outside-to-inside
 - Amplitude modulation is observed at the outside transducer due to the sensor data sent from the inside
 - Ultrasound source is NOT required on the inside
 - Low complexity and low power

Inside-to-Outside Communication

- Vary the electrical load on the inside transducer to send data, e.g. open and short
 - Electrical load variations produce changes in the acoustic impedance of the inside transducer
 - Acoustic impedance variations produce changes in the reflection coefficient at the transducer/wall interface
 - Reflected signal variations change the acoustic impedance seen by the outside transducer
 - Result: amplitude modulation at the outside transducer

Power Harvesting

- Convert electrical signal from transducer into a DC voltage on a storage capacitor
- When capacitor voltage is sufficiently large, control circuit turns on the voltage regulator to supply DC power to the remainder of the system
- Charge storage capacitor voltage in blue
 - Charge to 12 V (now 10 V)
 - Drop to 3 V (min voltage for inside circuit board)

Power Delivery Performance

- 40 V_p applied
- Plot power delivered to a load resistor on the inside
- Peak power (280 mW) delivery with a 37 Ω load at 1.087 MHz

Simulation Results

- PSpice Model
 - Model of an air-backed crystal and its attached layers.
 - Applied voltage when inside load changes from 5Ω to 56Ω every 50μs (20,000 Bits/second)