(1) (See Taylor 13.18.) Some time ago, we showed that the Lagrangian for a mass \(m \) with charge \(q \) moving otherwise freely in a static magnetic field \(\mathbf{B} = \nabla \times \mathbf{A} \) with \(\mathbf{A} = \mathbf{A}(\mathbf{r}) \) is \(L(\mathbf{r}, \dot{\mathbf{r}}, t) = \frac{1}{2}m\dot{\mathbf{r}}^2 + q\mathbf{r} \cdot \mathbf{A} \). Show that the Hamiltonian is \(H(\mathbf{r}, p) = (p - q\mathbf{A})^2/2m \) and that Hamilton’s equations give you the correct equation of motion, namely \(m\ddot{\mathbf{r}} = q\mathbf{r} \times \mathbf{B} \).

(2) (See Taylor 13.25.) Consider a Hamiltonian \(H(q, p) \) with one degree of freedom. Show that the coordinate transformation \(\{q, p\} \rightarrow \{Q, P\} \) where \(q = \sqrt{2P} \sin Q \) and \(p = \sqrt{2P} \cos Q \) is “canonical”, that is \(H(Q, P) \) also satisfies Hamilton’s equations. For the (scaled) simple harmonic oscillator Hamiltonian \(H(q, p) = (q^2 + p^2)/2 \), carry out this coordinate transformation and show that \(Q \) is ignorable. What is \(P \)? Solve Hamilton’s equations in terms of \(Q \) and \(P \), and then transform back to \(q \) and \(p \) and show that this is the expected behavior.

(3) (See Taylor 13.28.) An object of mass \(m \) moves in one dimension \(x \) according to a force \(F = kx \) with \(k > 0 \). Find the potential energy \(U(x) \) with \(U(0) \equiv 0 \), and discuss the types of motion separately for total energy \(E > 0 \) and \(E < 0 \). Now write down the Hamiltonian \(H(x, p) \) and derive phase space trajectories for \(E > 0 \) and \(E < 0 \). Briefly explain the connection between these two ways of describing the motion.

(4) Investigate Poincare sections for our driven damped pendulum, in particular sensitivity to what value with a period at which to draw the plot. Use the standard parameter settings \(\beta = \omega_0/4, \omega_0 = 1.5\omega \), and \(\omega = 2\pi \), with initial conditions \(\phi(0) = -\pi/2 \) and \(\dot{\phi}(0) = 0 \). Choose a “chaotic” driving strength, for example \(\gamma = 1.105 \). Then draw sections for times \(t_0 + dt \) where \(0 \leq dt \leq 1 \). You can do this with the Manipulate function in Mathematica if you want to see smoothly how the section changes.

(5) (See Taylor 12.23 and 12.24.) This is really a math problem, aiming to show you a little about nonlinear equations and how they behave using a logistics map. Using a calculator, MATLAB, Mathematica, or the computer program of your choice, build a logistics map for the relation \(x_{t+1} = f(x_t) \) where \(f(x) = r \sin(\pi x) \). Take \(t = 1, 2, \ldots, t_{\text{max}} \) with \(t_{\text{max}} = 20 \). Produce maps for the three cases (a) \(r = 0.1 \), (b) \(r = 0.5 \), and (c) \(r = 0.78 \). Contrast the three behaviors; you should notice that the behavior for \(r = 0.78 \) is rather different than the other two. Analyze \(f(x) = r \sin(\pi x) \) to find the values of \(r \) at which a second fixed point appears, and show that this is consistent with (b), and that (c) is in a region where you no longer expect any stable fixed points.