(1) The solution to the equation of motion for the one dimensional simple harmonic oscillator can be written in complex notation as $x(t) = Be^{i\omega t} + Ce^{-i\omega t}$. Explain why, for a physical mass-and-spring oscillator with $k = m\omega^2$, we need to enforce that $C = B^*$, and show that this gives the appropriate number of free parameters for a second order differential equation. Write $B = Ae^{-i\beta}$ for real parameters A and δ, and derive $x(t)$, $\dot{x}(t)$, the kinetic energy $\frac{m\dot{x}^2}{2}$, the potential energy $\frac{kx^2}{2}$, and the total energy in terms of A, δ, m, and ω. Also find the average kinetic and potential energies.

(2) In class, we separately derived the two solutions (each) for the under damped ($\beta < \omega_0$) and critically damped ($\beta = \omega_0$) oscillator. Here, derive the two critically damped solutions by taking the limit as $\beta \to \omega_0$ of the under damped solutions.

(3) This problem is not about “mechanics”, but uses the same mathematics we’ve addressed in class. A resistor R, capacitor C, and inductor L are connected in series. An AC voltage source $V(t) = V_0 e^{i\omega t}$ is put across these elements. Find the amplitude of the voltage drop $V_R(\omega)$ across the resistor, after transients have died away, and find the resonant frequency. (Assume the system is weakly damped.) For $R = 400\Omega$, $C = 10\mu F = 10\mu\mu F$, and $L = 2\text{mH}$, make a plot of $V_R(\omega)/V_0$ and also the phase $\delta(\omega)$ versus ω, covering the resonance. [Recall that for a current $I = \dot{q}$ through a circuit element, $V_R = IR$, $V_C = q/C$, and $V_L = L\dot{I}$.]

(4) A damped oscillator starts from rest at the origin at $t = 0$, at which time an oscillating driving force $F(t) = F_0 \cos \omega t$ is applied. The oscillator has a “natural” frequency ω_0 (that is, the frequency it would have if there were no damping) and a damping parameter β. Find the complete solution, including the initial conditions. In the following, set $F_0/m = 1$ and $\omega_0 = 2\pi$ and plot the position $x(t)$ as a function of time, starting at $t = 0$ up to a large enough time so that the transients have died away. For $\omega = \omega_0$, make plots for (a) $\beta = 0.1\omega_0$ and (b) $\beta = 0.9\omega_0$. Repeat for $\omega = 2\omega_0$. Comment on your results.

(5) (See Taylor Problem 5.53.) An oscillator is driven by the following periodic force:

(a) Find the long-term motion $x(t)$ assuming a natural period $\tau_0 = 2$, damping coefficient $\beta = 0.1$, and drive strength $f_{\text{max}} = 1$. Find the Fourier coefficients in the Fourier series for $x(t)$ and plot the sum of the first four terms in the series for $0 \leq t \leq 6$. (b) Repeat, except with natural period $\tau_0 = 3$. Why is the result so different? What about $\tau_0 = 4$?

You can work the integrals and use whatever computer program you’d like to make the plots. However, you are also welcome to use a symbolic manipulation program like MATHEMATICA or MAPLE to do the work. If you use MATHEMATICA, you would probably want to make use of the built-in functions TriangleWave and FourierCosSeries.