1) **Amplitude and phase of a resonance.**
 a) Define the “width” of a resonance by the frequency spread $\Delta \omega$ between the points below and above the peak, where the amplitude falls to half the peak height. Find an expression for $b \equiv (\Delta \omega)/\omega_0$ in terms of $Q \equiv \omega_0/(2\beta)$ when Q is a large value.
 b) Plot the resonant amplitude and phase, as a function of ω/ω_0, for forced oscillators with $Q = 10, 50,\text{ and } 200$, and compare the width you see with the formula derived in part (a).

2) **LCR resonant circuit.** This circuit is an electrical analog of the forced mechanical oscillator:

 ![LCR Circuit Diagram]

 a) Write the “equation of motion” for the charge q on the capacitor C. The current is driven around the circuit by a potential difference applied by the wave generator $V(t)$.
 b) Determine the parameters β and ω_0^2 defined in class (and also used in Greene, Eq.4.12) in terms of L, C, and R. Also derive an expression for the quality factor Q.
 c) Find an expression for the rate at which energy is dissipated in the resistor R.

3) (Pain, problem 2.6). For an oscillator with a large $Q = \omega_0/(2\beta)$, show that the fractional difference between the resonant frequency and ω_0 is approximately given by $1/(8Q^2)$.

4) **An impulse forcing function.** Perhaps the simplest way to force an oscillator into motion is to “kick” it with a short, sharp blow. Such a force has effectively zero time duration, but still manages to deliver a finite momentum kick to the mass on the oscillator. Mathematically, such an “impulse” force is described in terms of the Dirac Delta function $\delta(t)$. See Greene, Section 4.5.
 a) Set up in MAPLE the differential equation for the forced oscillator, where the forcing function is a series of “kicks” each separated by some time period τ.
 b) Using the initial conditions that the oscillator is at rest and at equilibrium, use `dsolve` to solve this equation, specifying `method=laplace`.
 c) Choose a set of parameters, with β and ω_0 corresponding to an underdamped oscillator. Plot the solution over several periods of the (undamped) oscillator $T_0 = (2\pi)/\omega_0$, for the three different values $\tau = 10T_0, T_0$, and $0.1T_0$. Explain the behavior.
 d) For $\tau = T_0$, plot the solution for two values of β, one much smaller than the other and explain the behavior.