Please state clearly all assumptions made in order for full credit to be given.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Problem #1 (25)

Consider the three points $P_1 (1, -4, 7)$, $P_2 (2, -1, 3)$, and $P_3 (-2, -6, 4)$ in a 3D Cartesian coordinate system,

(a) Determine vector \vec{A} with initial point P_1 and terminal point P_2;
(b) Determine vector $\vec{B} = P_1 - P_3/2$;
(c) Determine the angle, θ, between vectors \vec{A} and \vec{B}. Provide your result in degrees;
(d) Determine the vector component of \vec{B} along \vec{A};
(e) Determine the vector component of \vec{B} orthogonal to \vec{A}.

Solution:

(a) $\vec{A} = P_2 - P_1$

$$ = (2, -1, 3) - (1, -4, 7) = (1, 3, -4) .$$

(b) $\vec{B} = P_1 - P_3/2 = (1, -4, 7) - (-2, -6, 4)/2 = (1, -4, 7) - (-1, -3, 2) = (2, -1, 5).$

(c) $\cos\theta = \vec{A} \cdot \vec{B} / AB$

$$\vec{A} \cdot \vec{B} = 1 \cdot 2 + 3 \cdot (-1) + (-4) \cdot 5 = 2 - 3 - 20 = -21$$

$$A = \sqrt{1^2 + 3^2 + (-4)^2} = 5.099$$

$$B = \sqrt{2^2 + (-1)^2 + 5^2} = 5.477$$

$$\cos\theta = \frac{-21}{5.099 \cdot 5.477} = -0.752 \Rightarrow \theta = 138.8^\circ$$

(d) $\vec{B}_{A} = (\vec{B} \cdot \vec{u}_A) \vec{u}_A = \frac{\vec{B} \cdot \vec{A}}{A^2} \vec{A}$

$$= \frac{-21}{26} (1, 3, -4) = (-0.808, -2.423, 3.231)$$

(e) $\vec{B}_{\perp A} = \vec{B} - \vec{B}_{A}$

$$= (2, -1, 5) - (-0.808, -2.423, 3.231) = (2.808, 1.423, 1.769)$$
Problem #2 (25)

Determine the magnitude and coordinate direction angles of the resultant force acting on the pipe assembly.

Solution:

\[F_{1x} = F_1 \left(\frac{4}{5}\right) = 480 \text{ lb} \]
(2pts)

\[F_{1y} = 0 \text{ lb} \]
(2pts)

\[F_{1z} = F_1 \left(\frac{3}{5}\right) = 360 \text{ lb} \]
(2pts)

\[F_{2x} = F_2 \cos \alpha_2 = 400 \cos 60^\circ = 200 \text{ lb} \]
(2pts)

\[F_{2z} = F_2 \cos \gamma_2 = 400 \cos 120^\circ = -200 \text{ lb} \]
(2pts)

\[\cos^2 \alpha_2 + \cos^2 \beta_2 + \cos^2 \gamma_2 = 1 \Rightarrow \cos^2 \beta_2 = \frac{1}{2} \]

From figure, \(0^\circ < \beta_2 < 90^\circ \). Hence,

\[\cos \beta_2 = \frac{\sqrt{2}}{2} \]

\[F_{2y} = F_2 \cos \beta_2 = 400 \left(\frac{\sqrt{2}}{2}\right) = 282.8 \text{ lb} \]

(5pts)

\[\vec{F}_1 = \left(480\hat{i} + 0\hat{j} + 360\hat{k}\right) \text{ lb}, \quad \vec{F}_2 = \left(200\hat{i} + 282.8\hat{j} - 200\hat{k}\right) \text{ lb} \]

\[\therefore \vec{F}_R = \left(680\hat{i} + 282.8\hat{j} + 160\hat{k}\right) \text{ lb} \]
(2pts)

\[F_R = \sqrt{(680)^2 + (282.8)^2 + (160)^2} = 754 \text{ lb} \]
(2pts)

\[\cos \alpha = 680/754 = 0.902 \Rightarrow \alpha = 25.6^\circ \]
(2pts)

\[\cos \beta = 282.8/754 = 0.375 \Rightarrow \beta = 68.0^\circ \]
(2pts)

\[\cos \gamma = 160/754 = 0.212 \Rightarrow \gamma = 77.7^\circ \]
(2pts)
Problem #3 (25)

Two street lights are attached by cables to two poles as shown. The light at B has a weight of 40 lb and the light at C has a weight of 60 lb. The cable BC has to be fully horizontal. Determine the forces within the cables AB, BC and CD. (21 points)

Determine the height h of the post of D needed to ensure that BC is fully horizontal. (4 points)

Draw all needed free-body-diagrams separately from the figure above.

$\theta = \arctan(3/6) = 26.5651^\circ$ \hspace{1cm} $\sin(\theta) = 0.4472$ \hspace{1cm} $\cos(\theta) = 0.8949$

FBD of B

$\Sigma F_y = 0$

$T_{BA} \sin(\theta) - 40 \text{ lb} = 0$

$T_{BA} = 89.4427 \text{ lb}$

$\Sigma F_x = 0$

$-T_{BA} \cos(\theta) + T_{BC} = 0$

$T_{BC} = 80.0000 \text{ lb}$
FBD of C

$\sum F_x = 0$

$-T_{BC} + T_{CD} \cos(\phi) = 0$

$T_{CD} \cos(\phi) = 80$ \hspace{1cm} \text{(Eq. 1)}

$\sum F_y = 0$

$T_{CD} \sin(\phi) - 60 \text{ lb} = 0$

$T_{CD} \sin(\phi) = 60 \text{ lb}$ \hspace{1cm} \text{(Eq. 2)}

Eq.2/Eq1 $\rightarrow \tan(\phi) = 60/80$ \hspace{1cm} \phi = 36.8699^\circ

$T_{CD} = 100 \text{ lb}$

$\tan(\phi) = (h-17)/8 = 60/80$

$h = 23 \text{ ft}$
Problem #4 (25)

Solve the following system of linear equations using the Gauss-Jordan Elimination method:
3 \(x \) + 3 \(y \) + 2/3 \(z \) = 3
\(x \) + 1/2 \(y \) + 1 \(z \) = 2
5 \(x \) + 2 \(y \) + 1 \(z \) = 1/4

a) Write the augmented matrix (5 points)
b) Use elementary row operations to obtain the reduced row echelon form (17 points)
c) Write the solution for the three variables \(x \), \(y \), and \(z \) (3 points)

Show all details of the elementary row operations (no credit will be given for unsupported answers).

Augmented Matrix

<table>
<thead>
<tr>
<th>3</th>
<th>3</th>
<th>2/3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Elementary row operations

Divide row1 by 3

<table>
<thead>
<tr>
<th>3</th>
<th>3</th>
<th>2/3</th>
<th>3</th>
<th>R1 (\leftarrow) R1/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1/4</td>
<td></td>
</tr>
</tbody>
</table>

Add \((-1 \times \text{row1})\) to row2

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>2/9</th>
<th>1</th>
<th>R2 (\leftarrow) R2-1*R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2</td>
<td>1</td>
<td>2</td>
<td>R2 (\leftarrow) R2-1*R1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1/4</td>
<td></td>
</tr>
</tbody>
</table>

Add \((-5 \times \text{row1})\) to row3

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>2/9</th>
<th>1</th>
<th>R3 (\leftarrow) R3-5*R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1/2</td>
<td>7/9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1/4</td>
<td>R3 (\leftarrow) R3-5*R1</td>
</tr>
</tbody>
</table>

Divide row2 by \(-1/2\)

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>2/9</th>
<th>1</th>
<th>R2 (\leftarrow) R2/(-1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1/2</td>
<td>7/9</td>
<td>1</td>
<td>R2 (\leftarrow) R2/(-1/2)</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>-19/4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Add \((3 \times \text{row2})\) to row3

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>2/9</th>
<th>1</th>
</tr>
</thead>
</table>
Divide row3 by $-\frac{43}{9}$

Add $(\frac{14}{9} \times \text{row3})$ to row2

Add $(-\frac{2}{9} \times \text{row3})$ to row1

Add $(-1 \times \text{row2})$ to row1

RREF

Solution for the three variables x, y, and z

$x = -1$, $y = \frac{3}{2}$, $z = \frac{9}{4}$