6-5 Draw a free-body diagram for the curved bar shown in Fig. P6-5.

SOLUTION

The cable at B exerts a tensile force \(T \) on the bar that is tangent to the cable at point B. The action of the pin at support C is represented by force components \(C_x \) and \(C_y \).

6-6 Draw a free-body diagram for the angle bracket shown in Fig. P6-6.

SOLUTION

The action of the pin at support A is represented by force components \(A_x \) and \(A_y \). The roller at B exerts a compressive force \(B \) normal to the surface of the bracket.
6-11 Draw a free-body diagram for the cart shown in Fig. P6-11 which has a weight \mathbf{W}.

\[\text{Fig. P6-11} \]

SOLUTION

The cable exerts a force \mathbf{T} on the cart that is tangent to the cable at the point of attachment. The weight \mathbf{W} of the cart acts through the center of gravity \mathbf{G} of the cart and is directed toward the center of the earth. The support surface exerts normal forces \mathbf{N}_1 and \mathbf{N}_2 on the wheels since the surface is assumed to be smooth.

6-12 Draw a free-body diagram for the lawn mower shown in Fig. P6-12 which has a weight \mathbf{W} and is resting on a rough surface.

\[\text{Fig. P6-12} \]

SOLUTION

The weight \mathbf{W} of the mower acts through the center of gravity \mathbf{G} of the mower and is directed toward the center of the earth. The support surface exerts normal forces \mathbf{N}_1 and \mathbf{N}_2 and frictional forces \mathbf{F}_1 and \mathbf{F}_2 on the wheels since the surface is assumed to be rough.
6-26 Draw a free-body diagram for the bar bracket shown in Fig. P6-26. The support at B is a ball and socket joint. The ends of the bars at A and C rest against smooth surfaces.

Fig. P6-26

SOLUTION

The action of the ball-and-socket joint at support B is represented by force components B_x, B_y, and B_z. The smooth surfaces at A and C exert forces \bar{A} and \bar{C} on the bar bracket that are normal to the surfaces.