Please state clearly all assumptions made in order for full credit to be given.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Problem #1 (25)

Let \(A = \begin{pmatrix} 4 & 1 & -6 \end{pmatrix} \), \(B = \begin{pmatrix} -2 & 4 \\ 1 & -5 \end{pmatrix} \), \(C = \begin{pmatrix} 2 & -3 & 5 \\ 1 & 2 & 4 \end{pmatrix} \) and \(D = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 9 & -3 \\ -2 & 1 & -4 \end{pmatrix} \).

Determine the following expressions (if not possible, explain why):

1. \(CD \) (5pts)
2. \(A^T A - 3D \) (5pts)
3. \(B^{-1} \) (5pts)
4. \(|D| \) (5pts)
5. \(B + 6BB^{-1} \) (5pts)
Problem #2 (25)

A 3000 lb cylinder is supported by a system of cables as shown in figure below.

1. Identify the particle that needs to be analyzed to determine the tensions in the cables (1 Pt)

2. Draw a complete and separate FBD showing the particle and all the forces acting on the particle. (Note: Include ALL relevant coordinates as part of this FBD) (6 Pts)

3. Express all forces in a Cartesian vector form (6 Pts)

4. Write the (scalar) equilibrium equations. (9 Pts)

5. Determine the magnitude of the forces in the cables OA, OB and OC . (a calculator may be used for question 5). (3 Pts)
Problem #3 (25)

A force, a moment of couple (pure moment) and a weight act on a tunnel assembly as shown in the figure. The magnitude of the force acting at point B is 20 kN, that of the moment of couple is 50 kN m, acting parallel to section BA and that of the weight is \(W \) kN acting at point D. Section AB lies on \(y-z \) plane with a slope of 2 \((z \text{ to } y)\) and section BCD lies on \(x-y \) plane.

1. Find the moment of \(F \) about point O. Express the result as a Cartesian vector. (5pts)

2. Express the moment of couple in a Cartesian vector form. (Note: \(M_c = |M_c| u_{BA} \)). (5pts)

3. Determine the moment of \(W \) about point O using \(W \) kN. Express the result as a Cartesian vector. (5pts)

4. Find the resultant force and moment about point O. Express the results as a Cartesian vector. (5pts)

5. Determine the value of \(W \) (>0 kN) when the magnitude of the resultant moment about OA axis is minimum. (5pts)
Problem #4 (25)

A lever is loaded as shown below.

1. Draw a complete and separate FBD of lever. (5 Pts)
2. Write the equations of equilibrium for the lever (10 Pts)
3. Determine the reaction components at the pin A and the roller support B. (10 Pts)