Please state clearly all assumptions made in order for full credit to be given.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Problem #1 (25 %)

A rectangular sign over a store has a mass of 100 kg, with a center of mass in the center of the rectangle. The support against the wall at point C may be treated as a ball-and-socket joint. At corner D the support is only resisting motion along the y-axis.

a) Draw a complete and separate FBD for this problem (5 points)

b) Determine the magnitude of the tension in the two cables (8 points)

c) Determine the reaction at support D and express it in vector form (3 points)

d) Determine the reaction at support C and express it in vector form (9 points)
Problem #2 (25%)

For the plate shown below, determine the location of the centroid. Please record your intermediate answers in the table below. (Note the location of the axis-system origin: the intersection of the y and x axis)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem #3 (25 %)

A Warren truss is loaded as shown below. $P = 4 \text{kN}$. Using the Method of Sections, determine the force in members BC, CF, and FG. The support at A is a smooth pin and at D is a roller. Specify tension (T) or compression (C) for the force in each member.

Note: For full credit, you must draw the appropriate free body diagrams.
Problem #4 (25%)

\[x_1 + 3x_2 + 2x_3 = -5 \]
\[4x_1 + 2x_2 + 3x_3 = 5 \]
\[-2x_1 - x_2 + 3x_3 = 2 \]

a) Express the three equations in the form \(AX = B \)
 (3 points)
b) Using the method learned in class determine the inverse of matrix \(A \)
 (12 points)
c) Use the inverse found in b) to solve for \(x_1, x_2, \) and \(x_3 \).
 (6 points)
d) Using the method of cofactor expansion, determine the determinant of matrix \(A \) by expanding along the second column
 (4 points)
Circular arc

\[L = 2\alpha r \]
\[x_C = \frac{r \sin \alpha}{\alpha} \]
\[y_C = 0 \]

Quarter circular arc

\[L = \frac{\pi r}{2} \]
\[x_C = \frac{2r}{\pi} \]
\[y_C = \frac{2r}{\pi} \]

Semicircular arc

\[L = \pi r \]
\[x_C = \frac{r}{2} \]
\[y_C = \frac{2r}{\pi} \]

Rectangular area

\[A = bh \]
\[x_C = \frac{b}{2} \]
\[y_C = h \]

Triangular area

\[A = \frac{bh}{2} \]
\[x_C = \frac{2b}{3} \]
\[y_C = \frac{h}{3} \]

Triangular area

\[A = \frac{bh}{2} \]
\[x_C = \frac{a + b}{3} \]
\[y_C = \frac{h}{3} \]

Circular sector

\[A = \frac{\pi r^2 \alpha}{2} \]
\[x_C = \frac{2r \sin \alpha}{3\alpha} \]
\[y_C = 0 \]

Quadrant of a circle

\[A = \frac{\pi r^2}{4} \]
\[x_C = \frac{4r}{3\pi} \]
\[y_C = \frac{4r}{3\pi} \]

Semicircular area

\[A = \frac{\pi r^2}{2} \]
\[x_C = \frac{4r}{3\pi} \]
\[y_C = \frac{4r}{3\pi} \]

Quadrant of an ellipse

\[A = \frac{\pi ab}{4} \]
\[x_C = \frac{4a}{3\pi} \]
\[y_C = \frac{4b}{3\pi} \]

Parabolic spandrel

\[A = \frac{bh}{3} \]
\[x_C = \frac{2b}{3} \]
\[y_C = \frac{3h}{10} \]

Quadrant of a parabola

\[A = \frac{2bh}{3} \]
\[x_C = \frac{5b}{8} \]
\[y_C = \frac{2h}{5} \]