Rensselaer Research Review Winter 2009-10
*
*
Student Prize Winner Helping Hydrogen
*

Determined to play a key role in solving global dependency on fossil fuels, Javad Rafiee, a doctoral student in the Department of Mechanical, Aerospace, and Nuclear Engineering (MANE) at Rensselaer Polytechnic Institute, has developed a new method for storing hydrogen at room temperature.

Rafiee has created a novel form of engineered graphene that exhibits hydrogen storing capacity far exceeding any other known material. For this innovation, which brings the world a step closer to realizing the widespread adoption of clean, abundant hydrogen as a fuel for transportation vehicles, Rafiee is the winner of the 2010 $30,000 Lemelson-MIT Rensselaer Student Prize.

Enabling Greener Transportation with Graphene

Hydrogen storage has proven to be a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies in cars, trucks, and other applications. Rafiee has developed a new method for manufacturing and using graphene, an atom-thick sheet of carbon atoms arranged like a nanoscale chain-link fence, to store hydrogen. His solution is inexpensive and easy to produce.

With adviser and Rensselaer MANE Professor Nikhil Koratkar, Rafiee used a combination of mechanical grinding, plasma treatment, and annealing to engineer the atomic structure of graphene to maximize its hydrogen storage capacity. This new graphene has exhibited a hydrogen storage capacity of 14 percent by weight at room temperature — far exceeding any other known material.

This 14-percent capacity surpasses the U.S. Department of Energy 2015 target of realizing a material with hydrogen storage capacity of 9 percent by weight at room temperature. Rafiee said his graphene is also one of the first known materials to surpass the Department of Energy’s 2010 target of 6 percent.

After oxidizing graphite powder and mechanically grinding the resulting graphite oxide, Rafiee synthesized the graphene by thermal shock followed by annealing and exposure to argon plasma. These treatments play an important role in increasing the binding energy of hydrogen to the graphene surface at room temperature, as hydrogen tends to cluster and layer around carbon atoms.

Listen to a podcast interview with Javad Rafiee.

*
*
*
“Student Prize Winner
Helping Hydrogen”
* Page 1 | 2 * Next > *
*
*
*
Subscribe/Unsubscribe to the
Rensselaer Research Review Bulletin
  Front Page | Back Issues    Winter 2009-10
*
* Rensselaer Polytechnic Institute

Rensselaer Research Review
Copyright © 2007-10 Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180  (518) 276-6000  
http://www.rpi.edu