Rensselaer Research Review Summer 2009
*
*
Insights Into Male Fertility
*
*
Mark Platt
Assistant Professor of Chemistry and Chemical Biology Mark Platt
*
Researchers have known for more than half a century that sperm is able to fertilize an egg only after it has resided for a period of time in the female reproductive tract. Without this specific interaction with the female body, the sperm is incapable of producing offspring. But until now there was very little understanding of what changes occur within the sperm that suddenly allows it to fertilize an egg.

In the Journal of Proteome Research, Rensselaer Polytechnic Institute Assistant Professor of Chemistry and Chemical Biology Mark Platt reveals the molecular-level changes that occur within sperm after it enters the female reproductive tract. His findings provide important clues into the still-mysterious process of capacitation, the process by which sperm acquire the ability to fertilize an egg.

His findings provide important clues into the still-mysterious process of capacitation, the process by which sperm acquire the ability to fertilize an egg, including why some otherwise healthy males might encounter fertility issues.

Understanding Capacitation

“Much has been done to understand capacitation, but with the tools that we have within the lab we can now identify how specific sites on individual proteins are modified during this process,” said Platt. “With this knowledge we can develop a deeper understanding of the molecular mechanisms required to provide sperm with fertilizing competence.”

“Based upon some of our additional work, a few of these sites appear to be essential to carrying out the process of capacitation,” Platt said.

Flicking the Light Switch

Phosphorylation can be thought of as a light switch, which can be used to turn on or turn off a step in the chain of reactions, known as a signal transduction cascade, that leads to capacitation. Just like the initial flicking of a light switch quickly moves electricity through the wires to turn on a lamp across the room, phosphorylation provides the initial trigger that moves a cellular signal through the cell that turns “on” its ability to fertilize an egg. According to Platt, by interfering with a just a single site of phosphorylation, scientists could entirely switch off the fertilization process. It is this ability that has the strongest potential for the development of a novel contraceptive.

“If phosphorylation on a particular amino acid is absolutely required for sperm capacitation, a drug could be developed which prevents phosphorylation from occurring at that specific site, thereby preventing the entire capacitation process,” Platt said. This turning off of the phosphorylation switch could then prevent fertilization entirely.

*
*
*
“Insights Into Male Fertility”
* Page 1 | 2 * Next > *
*
*
*
Subscribe/Unsubscribe to the
Rensselaer Research Review Bulletin
  Front Page | Back Issues    Summer 2009
*
* Rensselaer Polytechnic Institute

Rensselaer Research Review
Copyright © 2007-09 Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180  (518) 276-6000  
http://www.rpi.edu