*
Rensselaer Research Review Spring 2007 * Feature Articles Awards & Grants Recent Patents Accolades
*
*
*
*
“Densifying” Carbon Nanotube Bundles

James Jian-Qiang Lu, associate professor of physics and electrical engineering at Rensselaer, together with his research associate Zhengchun Liu, decided to investigate how to “densify” carbon nanotube bundles after they are already grown.

He detailed the results of the post-growth densification project on June 6 at the Institute of Electrical and Electronics Engineers’ International Interconnect Technology Conference (IITC) in Burlingame, Calif.

Lu’s team discovered that by immersing vertically grown carbon nanotube bundles into a liquid organic solvent and allowing them to dry, the nanotubes pull close together into a dense bundle.

Lu attributes the densification process to capillary coalescence, which is the same physical principle that allows moisture to move up a piece of tissue paper that is dipped into water.

The process boosts the density of these carbon nanotube bundles by five to 25 times. The higher the density, the better they can conduct electricity, Lu says.

Several factors, including nanotube height, diameter, and spacing, affect the resulting density, Liu adds. How the nanotubes are grown is also an important factor that impacts the resulting shape of the densified bundles.

Images of the experiment are more striking than any “before and after” photos of the latest fad diet. In one instance, Liu started with a carbon nanotube bundle 500 micrometers in diameter, shaped somewhat like a marshmallow, and dipped it into a bath of isopropyl alcohol.

As the alcohol dried and evaporated, capillary forces drew the nanotubes closer together. Van Der Waals forces, the same molecular bonds that boost the adhesion of millions of setae on gecko toes and help the lizard defy gravity, ensure the nanotubes retain their tightly packed form.

The resulting bundle shrunk to a diameter of 100 micrometers, with a 25-fold increase in density. Instead of a marshmallow, it looked more like a carpenter’s nail.

“It’s a significant and critical step toward the realization of carbon nanotube interconnects with better performance than copper,” Lu says of his research findings. “But there’s still a lot of work to do before this technology can be integrated into industrial applications.”

*
Carbon nanotube bundle
A carbon nanotube bundle before (above) and after (below) densification.
Carbon nanotube bundle
*
*
*
*
*
*
Subscribe/Unsubscribe to the
Rensselaer Research Review E-mail Bulletin
*
Rensselaer Polytechnic Institute

Rensselaer Research Review
Copyright © 2007 Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180  (518) 276-6000  
http://www.rpi.edu