Rensselaer Research Review Spring 2008
*
*
*
Wayne G. Roberge
Functionalizing carbon nanotubes
with peptides that recognize anthrax toxin
Oxidized MWNT is treated with (1) mono-N-t-boc-amido-dPEG11-amine, (2) chloroacetic anhydride and (3) peptide (Ac-HTSTYWWLDGAPC-amide) that binds to the heptamer, [PA63]7, in anthrax toxin, and subsequently added to a mixture of heptamer and ADH (4).
*
Applications

Kane’s new method for selective nanotube-assisted protein deactivation could be used in defense, homeland security, and laboratory settings to destroy harmful toxins and pathogens. The method could also offer a new method for the targeted destruction of tumor cells. By conjugating carbon nanotubes with peptides engineered to seek out specific cancer cells, and then releasing those nanotubes into a patient, doctors may be able to use this remote protein deactivation technology as a powerful tool to prevent the spread of cancer.

Kane’s team also developed a thin, clear film made of carbon nanotubes that employs this technology. This self-cleaning film may be fashioned into a coating that — at the flip of a light switch — could help prevent the spread of harmful bacteria, toxins, and microbes.

“The ability of these coatings to generate reactive oxygen species upon exposure to light might allow these coatings to kill any bacteria that have attached to them,” Kane said. “You could use these transparent coatings on countertops, doorknobs, in hospitals or airplanes — essentially any surface, inside or outside, that might be exposed to harmful contaminants.”

Kane said he and his team will continue to hone this new technology and further explore its potential applications.

Contributors

Co-authors of the paper include Department of Chemical and Biological Engineering graduate students Amit Joshi and Shyam Sundhar Bale; postdoctoral researcher Supriya Punyani; Rensselaer Nanotechnology Center Laboratory Manager Hoichang Yang; and professor Theodorian Borca-Tasciuc of the Department of Mechanical, Aerospace, and Nuclear Engineering.

The group has filed a patent disclosure for their new selective nanotube-assisted protein deactivation technology. The research project was funded by the U.S. National Institutes of Health and the National Science Foundation.

*
*
*
* Page 1 | 2 * < Back *
*
*
*
Subscribe/Unsubscribe to the
Rensselaer Research Review Bulletin
  Front Page | Back Issues    Spring 2008
*
* Rensselaer Polytechnic Institute

Rensselaer Research Review
Copyright © 2007-08 Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180  (518) 276-6000  
http://www.rpi.edu