logo_gray
title
 
Big Data
 
  Quick Links

DNA Analysis Unearths Origins of Minoans, the First Major European Civilization

spacer  
spacer
spacer  
spacer
The Palace of Minos in Knossos restored by British archeologist Sir Arthur Evans. Knossos was the major civil center of the Minoans. Reprinted by permission from Getty images
spacer  

Research published in Nature Communications—produced with the aid of Rensselaer computer scientist Petros Drineas—used DNA analysis to unearth the previously unknown origin of the Minoans, who some 5,000 years ago established the first advanced Bronze Age civilization in present-day Crete.

Results suggest that the Minoan civilization arose from the population already living in Bronze Age Crete, people who were probably descendents of the first humans to reach Crete about 9,000 years ago, and who bear greatest genetic similarity with modern European populations.

The British archeologist Sir Arthur Evans in the early 1900s named the Minoans after a legendary Greek king, Minos. Based on similarities between Minoan artifacts and those from Egypt and Libya, Evans proposed that the Minoan civilization founders migrated into the area from North Africa. Since then, other archaeologists have suggested that the Minoans may have come from other regions, possibly Turkey, the Balkans, or the Middle East.

Although the technique has been around for more than a century, my group, for the past 10 years, has been developing the algorithms that allow us to apply this technique to massive datasets. We can handle these 14,000 samples and we can do it in a very routine way using nothing more than a quality desktop computer.
—Petros Drineas

In the Nature Communications study, a team of researchers in the United States and Greece, including Drineas, a Rensselaer associate professor of computer science and member of the Rensselaer Data Science Research Center, used mitochondrial DNA analysis of Minoan skeletal remains to determine the likely ancestors of these ancient people. The team was lead by Dr. George Stamatoyannopoulos, University of Washington professor of medicine and genome sciences.

Mitochondria, the energy powerhouses of cells, contain their own DNA, or genetic code. Because mitochondrial DNA is passed down from mothers to their children via the human egg, it contains information about maternal ancestry.

Drineas worked to transform a database of genetic information on more than 14,000 modern and ancient individuals, and genetic information collected from the remains of 37 Minoan individuals, into a visual format that revealed the connections between the ancient Minoans and modern populations in Europe, Asia, and Africa. To achieve the results, Drineas used his own expertise in applying a mathematical technique called “principal component analysis” to the large dataset.

“Principal component analysis allows us to take a large dataset and reduce it to a more manageable number of dimensions —say two or three dimensions —which can be plotted visually,” said Drineas, who completed the statistical analysis in collaboration with Peristera Paschou of Democritus University of Thrace. “Although the technique has been around for more than a century, my group, for the past 10 years, has been developing the algorithms that allow us to apply this technique to massive datasets. We can handle these 14,000 samples and we can do it in a very routine way using nothing more than a quality desktop computer.”

Drineas said the results of the analysis were immediately visible.

“What we saw immediately when we looked at this data is the relationships between the Minoans and the modern European populations,” Drineas said. “In the plot, you see individuals that belong to nearby populations clustered together, with the Minoans being relatively close to a number of European populations, while other populations —North African for example —are farther away.”

Further analysis showed that the Minoans were only distantly related to Egyptian, Libyan, and other North African populations. The Minoan shared the greatest percentage of their mitochondrial DNA variation with European populations, especially those in Northern and Western Europe.

When plotted geographically, shared Minoan mitochondrial DNA variation was lowest in North Africa and increased progressively across the Middle East, Caucasus, Mediterranean islands, Southern Europe, and mainland Europe. The highest percentage of shared Minoan mitochondrial DNA variation was found with Neolithic populations from Southern Europe.

Co-authors of the study are Jeffery R. Hughey of Hartnell College; Peristera Paschou of Democritus University of Thrace; Drineas of the Rensselaer; Manolis Michalodimitrakis of the University of Crete; and Donald Mastropaolo, Dimitra M. Lotakis, Patrick A. Navas, and Stamatoyannopoulos of the University of Washington. The study was partially supported by a grant from the National Institutes of Health (5T32 GM007454), as well as from private funding. Drineas was supported by an NSF CAREER award (NSF CCF 824684).

News Release

 

 

 
 

Innovation

Big Data—The Internet and Beyond

Jim Hendler: Moving From Big to Broad Data

IBM’s Watson Joins Research Team at Rensselaer

Automating the Quest for New Technologies

DNA Analysis Unearths Origins of Minoan Civilization

Insights from Innovators

Big Data News at Rensselaer

Back Issues
Subscribe/Unsubscribe

News and Events

Research

Rensselaer Home

Search

RSS Twitter YouTube Facebook

 

 
     
 
*
spacer

Innovation at Rensselaer
Copyright © 2007-13 Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180  (518) 276-6000  http://www.rpi.edu

 
podcasts twitter facebook YouTube RSS feeds