Some suggestions for studying ...

- Make your own course outline
 Today’s class just hits the high points
- Be familiar with the textbook
- Review the homework problems
- Work problems from other sources
 ↪ Do last year’s exams
 ↪ Check out other web sites

... and for taking the final

- Do the questions you know first
- Try not to “look up” answers
 ↪ Trust what you know
- Use “look up” for hardest questions
- Remember: Grades will be curved
 ↪ Don’t panic!
Basic Physics
Gravitation and Motion

• Newtonian Gravity

Force: \[F = \frac{GM(r)m}{r^2} \]

Potential Energy: \[U = -\frac{GM(r)m}{r} \]

• Circular Motion

\[F = ma \text{ where } a = \frac{v^2}{r} \]

• Applications

Energy release in gravitational contraction
Center of mass and motion of binary systems
 Examples: Cygnus X-1, Galaxy & M31
Mass at the center of M87
Escape velocity
 Schwartzschild radius
Newtonian cosmology
Basic Physics

Electromagnetic Radiation

• Regions of the electromagnetic spectrum
• Diffraction
• Doppler shift
 Nonrelativistic and relativistic

Primary sources of electromagnetic radiation

• Line sources: Atomic & Molecular states
 Bohr atom, Balmer formula
• Blackbody radiation: Thermal, continuous
 Stefan-Boltzmann law ⇒ $L = 4\pi R^2 \sigma T^4$
 Wien’s Displacement Law ⇒ “Color”

Remember: Thermal energy $E \approx kT$ per particle

• Synchrotron radiation: Nonthermal, continuous
 Spectrum falls like $1/\nu$
The Solar System
A model for much of the basic physics

• **Mass of the Sun and planets**
 Circular orbit approximation works well

• **Kepler’s Laws**
 Elliptical orbits
 Properties of ellipses
 Equal areas in equal times
 Conservation of angular momentum
 \[P^2 \propto a^3 \]
 Natural units: Years, AU, Solar mass

• **The Roche Limit**
 Tidal disruption and the rings of Saturn

• **Solar system details**
 Atmospheres
 Moons and rings
 Asteroids and comets
Telescopes

• Different telescopes for different wavelengths

• “Images” or “data”

• Diffraction limit of resolution

 Telescope with aperture \(d\) observing at a wavelength \(\lambda\), \(\theta = 1.22 \times \frac{\lambda}{d}\) with \(\theta\) in radians

• Measures of angle

 \[360^\circ = 2\pi \text{ radians}\]
 \[57.3^\circ = 1 \text{ radian}\]
 \[1^\circ = 60 \text{ arcmin (')}\]
 \[1' = 60 \text{ arcsec (")}\]

Example: For \(\theta\) in arcsec, write

\[
\theta = \frac{360}{2\pi} \times 60 \times 60 \times \frac{\lambda}{d} = 206265 \times \frac{\lambda}{d}
\]
Measuring Stars

Distances and magnitudes

• **Parallax:** 1 parsec (pc) = 1 a.u./sin(1”)

• **Magnitude:** Measure of brightness
 - Apparent (m,V,...) or absolute (M,M$_V$,...)
 - Inverse log scale: $m \propto \log \frac{1}{L/d^2}$
 - Color Index
 - Distance modulus $m - M = 5\log d - 5$
 - Bolometric magnitude

Binary systems

• Not unusual!

• Important for determining properties
 Combine physics with observations
 \Rightarrow Mass and radius determined

Example: $L \propto M^3$ (approximately)

This is for main sequence stars only!
Stellar Properties & Evolution

• Spectral class and surface temperature

• Luminosity class and “size”

• HR Diagrams
 ☞ Historical, Observational, or Physical
 ☞ Main sequence, giants, dwarfs

• Properties of Main Sequence
 ☞ Mass and luminosity \(\Rightarrow \) Lifetime
 ☞ Mass and radius

• Stellar structure
 ☞ Hydrostatic Equilib. \(\Rightarrow \) Central pressure
 ☞ Equation of state \(\Rightarrow \) Central temperature
 ☞ Nuclear reactions

• Evolutionary paths
 ☞ Study on HR diagrams
 ☞ Solar mass stars \(\text{vs} \) massive stars
 ☞ Population II stars
Special Case Stars
Small, Variable, Violent, or just plain Weird

• Small (i.e. “compact”) stars
 ☞ White dwarfs
 ☞ Neutron stars
 ☞ Black holes

• Variable stars
 ☞ Cepheids (Type I and II) and RR Lyrae
 Distance indicators!

• Violent stars
 ☞ Novae
 ☞ Type I Supernovae
 ☞ Type II Supernovae

• Weird stars
 ☞ Close binaries with compact object
 Cygnus X-1 (black hole companion)
 Centaurus X-3 (neutron star companion)
 SS 433: Weird jets!
The Interstellar Medium

Composition

• Dust and gas

• Dust scatters light
 ☞ Dense areas (“clouds”) are dark
 ☞ General areas are “reddened”
 ⇒ Modify distance modulus!

• Gas absorbs or emits “light”
 ☞ Hot gas emits in optical (“HII regions”)
 ☞ Cold gas emits in radio (“HI regions”)

Star formation

• Collapsing clouds of gas and dust
 ☞ Time scale for collapse
 ☞ Mass scale for collapse

• Disks and planet formation
The Universe

• Hubble’s Law
 ☞ Optical spectra of galaxies
 Emission and absorption lines vary
 Ca H and K lines generally visible
 ☞ For “nearby” galaxies: \(z = \frac{H}{c} d \)
 ⇒ Interpret as “Doppler shift”
 ☞ Implies the universe is expanding
 ⇒ The age of the universe
 ☞ Find \(H_{\text{TODAY}} = H_0 \approx 75 \text{ (km/sec)/Mpc} \)

Consistent with the age of globular clusters?

• Large scale structure
 ☞ Clusters of galaxies
 The local group
 The Virgo cluster
 The Coma cluster
Active Galaxies and Quasars

Galaxies with very bright central regions

• Radio galaxies
 ➕ Ellipticals
 ➕ Compact (M87) or extended (Cygnus A)
 ➕ Suspect supermassive black holes
 Accretion disk ⇒ jets
 ➕ The core of M87

• Seyfert galaxies
 ➕ Spirals with very bright centers
 ➕ Strong emission lines

• Quasars
 ➕ Old days: Starlike radio sources
 ➕ Very large redshifts
 ➕ Today: Very distant active galaxies
Cosmology

• The Flat Universe
 ☞ Relation between dR/dt, R, and M
 ☞ Relation between H and ρ
 \Rightarrow The universe is probably flat

• Justification through General Relativity
 ☞ Energy gravitates: Light bending

• Cosmic Microwave Background
 ☞ Lots and lots of photons
 ☞ Photons are low energy (today)

• The Big Bang
 ☞ Photons ruled the early universe
 ☞ Particle creation in the primordial soup
 ☞ The first three minutes: H, He, ...

• Formation of the galaxies
 ☞ Looking back in time
 ☞ Protogalaxies with the HST