Preliminary Examination
January, 2001

Ground rules: No books, notes or calculators are allowed. Please do any 10 problems. On the front page of the answer book, identify the 10 problems you wish to be graded. You have 4 hours to complete the examination.

1. If \(f(x) = \sin(ln x) \), show that \(x^2 f''(x) + xf'(x) + f(x) = 0 \).

Find the second order Taylor Polynomial approximation to \(f(x) \) at \(x = 1 \). Evaluate \(\lim_{x \to 1} \frac{f(x)}{x - 1} \).

2. (a) Do the series

\[
\sum_{n=1}^{\infty} \frac{(-1)^n n}{2n - 1}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n \sin \left(\frac{1}{n} \right)}{n}, \quad \sum_{n=1}^{\infty} \sin^2 \left(\frac{1}{n} \right)
\]

converge? Explain.

(b) Show that the integral

\[
\int_{0}^{1} \frac{dx}{[2x - 1]^{1/2}}
\]

converges and compute its value.

3. Show that \(L : \mathbb{R}^3 \to \mathbb{R}^2 \) defined by

\[
L \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 \\ a_3 \end{pmatrix}
\]

is a linear transformation. Is \(L \) one-to-one (or injective)? Is \(L \) onto (or surjective)? Find a basis for the null space of \(L \).

4. Find the eigenvalues and the associated eigenvectors for

\[
A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}
\]

Is \(A \) diagonalizable? If so, exhibit a matrix \(S \) and a matrix \(S^{-1} \) that diagonalize \(A \).
5. (a) Let A and B be given nonzero vectors in \mathbb{R}^3, and τ the position vector of a point. Describe the set of points determined by the equation

$$(\tau - A) \cdot (\tau - B) = 0.$$

(b) For a nonzero vector A, show whether or not it is always true that

$$A \cdot B = A \cdot C \quad \text{and} \quad A \times B = A \times C \quad \text{implies that} \quad B = C.$$

6. The planes M_1 and M_2 are given by the equations $x+2y+2z = 1$ and $3x-2y+6z = 3$. These planes intersect in a line L. Find an equation for the plane which contains L and bisects the acute angle between M_1 and M_2.

7. Consider the function $f(x, y) = \sqrt{xy}$.

(a) For (x, y) in the first quadrant, sketch either a graph, or some level curves, of f.

(b) Consider the following quantities:

i. ∇f at $(0,0)$.

ii. Df, the directional derivative pointing in the direction from $(0,0)$ to $(3,4)$, and evaluated at $(0,0)$.

iii. The tangent plane to the graph of f at $(0,0)$.

iv. The linear approximation to f at $(0,0)$.

If these quantities exist, evaluate them. If they do not, explain why not.

8. Two masses m_1 and m_2 occupy nonoverlapping regions R_1 and R_2 in \mathbb{R}^3. Let P_1 and P_2 be the centers of mass of R_1 and R_2 respectively. Show that the center of mass of m_1 and m_2 considered as a single mass in space is the same as it would be if the entire mass m_1 were concentrated at P_1 and the entire mass m_2 at P_2. Do not assume constant density.

Will the result hold for three masses m_1, m_2 and m_3 in nonoverlapping regions R_1, R_2 and R_3?

9. If $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $A = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, find

$$\max_x x^T A x$$

when

$$x^T B x = 1$$
10. Let A be an $n \times n$ real matrix

where

$$A = A^T,$$

$$Av^k = \lambda_k v^k, \quad k = 1, 2, \ldots, n$$

and

$$(v^k)^T v^k = 1$$

and

$$0 < \lambda_1 < \lambda_2 < \ldots < \lambda_n.$$

(a) Prove

$$A = \sum_{k=1}^{n} \lambda_k v^k (v^k)^T.$$

(b) Find A^{-1}, e^A, and a matrix B that solves $B^2 = A$ all in terms of λ_k and v^k.

11. If $\mathbf{E}(r) = \frac{r}{|r|^3}$ for $r = (x, y, z)$, a vector in R^3.

Find

(a) $\text{div} \mathbf{E}(r) = \nabla \cdot \mathbf{E}(r)$ when $r \neq 0$.

(b) $\int_S \mathbf{E}(r) \cdot \mathbf{n} \, dA$ when $S = \{(x, y, z) | (x - 2)^2 + (y - 2)^2 + (z - 2)^2 = 1\}$.

(c) $\int_S \mathbf{E}(r) \cdot \mathbf{n} \, dA$ when $S = \{(x, y, z) | (x - 2)^2 + (y - 2)^2 + (z - 2)^2 = 100\}$.

12. Let C be a simple, smooth, closed plane curve bounding an area A.

(a) Find

$$\int_C x \, dy - y \, dx$$

in terms of A.

(b) If $\mathbf{E}(r)$ is a smooth vector field in R^3 and

$$\text{curl} \mathbf{E}(r) = \nabla \times \mathbf{E}(r) = 0$$

show there is a function $u(r)$ where $\mathbf{E}(r) = \nabla u(r) = \text{grad} u(r)$.

3