Potential of *Eichhornia Crassipes* for Biomass Refining

Jessica E. Hronich, Lealon Martin, Joel Plawsky, & Henry Bungay

November 7th, 2007
Introduction

• Department of Energy goal:
 • 60 Bgal/yr ethanol by 2030¹

• Current production
 • 5.4 Bgal/yr blended into gasoline for 2006²
 • 129 Ethanol plants, and growing

• The need for diverse feedstocks
 • Corn grain can only meet 15% of transportation needs¹
 • Cellulosic ethanol can fill remainder
 • Greater energy output/input ratio³

Feedstock Evaluation

• Ideal Attributes
 • Wide availability
 • Ease of cultivation
 • Frequent harvest cycles
 • No / low competition with food crops
 • Easy to process
 • Inexpensive

• Water hyacinth
 • Global invasive nuisance weed
 • Growth can exceed 200 tons DM / ha / yr
 • 2 week harvest cycle
 • Aquatic plant
 • Low-tech processing
 • Millions of dollars spent each year to remove / dispose
Process Description

- Cultivation
- Harvest & Collection
- Pressing
- Pretreatment / Storage
- Hydrolysis / Fermentation
Cultivation

• Infested waterways
 • Removal credit
 • Developing countries

• Hyacinth cultivation (farms)
 • Unused commercial ponds / lakes
Harvest & Collection

A Floating Island Shredder
Photo by J. Schiess
SHJ/Florida D.E.P.

Removing Floating Islands of vegetation with a Harvester
Photo by J. Schiess
SHJ/Florida D.E.P.

Harvester attempting to remove water hyacinth and water lettuce jam in Moore Haven Canal
Lake Okeechobee 1986
Photo by J. Schiess
2002 Florida D.E.P.
Harvest & Collection

- Novel cutter design
 - Simply slice mats
 - *Mat width design variable*
 - *Length dependent on connectivity*
 - Use less energy than traditional harvesters
 - Tow swaths of mats to shore
- **Cut pattern to allow re-growth**
Pressing

- Can remove approximately 97 wt% of the water
- Will decrease volume for silage
- Water will be processed (if necessary) and returned to lake
Pretreatment / Storage

- Partial Anaerobic digestion
 - Approximately 14 days
 - Less energy intensive
- Remove loose water
- Combine with storage to reduce costs
Process Cost Estimation

- Estimation allowed for multiple inputs to affect overall cost per ton to produce
- Referenced current biomass-to-ethanol evaluations
- Manufacturing cost estimation for chemical process industry adapted for agribusiness plan\(^1\)
- Key design parameters taken from literature, manufacturers, and best guesses

Key Design Parameters

- **Cultivation**
 - Lake covered in 300 acres of hyacinth
 - Located in United States
 - 100 ton dry matter / ha / yr

- **Harvest / Collection**
 - Cut width of 3.5 m
 - Cut speed of 45 m / min
 - Harvested 8 hours / day

- **Pressing**
 - 97 wt% water removal
 - Power usage: 18HP/ton fiber/hr

- **Pretreatment / Storage**
 - 14 days to digest

- **Misc.**
 - Labor ($10 / hr + benefits)
 - Overheads
 - Taxes, insurance
 - Depreciation
Total Cost: $28 / ton of dry matter
Sensitivity Analysis

- Lowest possible cost
 - 1 harvester & 1 transport boat
 - Cut width greater than 7m
 - Cut speed greater than 45 m/min
- Operation most likely at 3.5 m and 45 m/min
Future Work

- Investigation of digestion process
 - Temperature
 - pH
 - Residence time
- Hydrolysis methods
 - Acid
 - Enzymatic
- Fermentation yields
 - Quality of biomass produced
- Application to other aquatic nuisance weeds

Summary

- **Water hyacinth as a feedstock**
 - Rapid growth rate
 - Wide availability
 - Low cost

- **Exportable low-technology process**

- **Cost Estimation / Sensitivity Analysis**
 - *E. Crassipes* is an economically viable biomass feedstock
 - *A blight on an ecosystem can be used as an economic benefit*
 - *Cost competitive with other feedstocks (less than $40 per dry ton)*
Acknowledgements

• NSF IGERT fellowship
• Rensselaer Chemical & Biological Engineering
• The Martin Group