Various Applications of Flow Control

Professor Miki Amitay

Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute

Active Control of Structural Vibrations and Aerodynamic Performance of Wind Turbine Blades – Funded by NYSERDA

Victor Malnudkin, Bill Grossick, and Miki Amitay

Wind Energy
- As wind turbines increase in size and power, they become more prone to high amplitude fatigue loads that reduce the operating life of the wind turbine.
- Wind turbines suffer from low energy production at low wind speeds and must be shut down at high speeds to avoid structural damage.

Objectives
- Reduce blade vibration by selectively increasing or decreasing the aerodynamic loads along its span using active flow control via synthetic jet actuators.
- Increase the efficiency of wind turbines by improving their energy capture capability at low wind speeds and relieving unwanted loads at high speeds.

Synthetic Jet Actuators

- Zero-net-mass-flux (ZNMF)
- Allows maximum transfer to the flow
- Diaphragms and cavities are driven near resonance
- Small electric power input
- No plumbing or any mechanical complexity is needed
- Low cost

Active Control of transonic flow in serpentine inlets – Funded by Northrop Grumman Corporation

John Vaccaro and Miki Amitay

- The inlet to an aircraft propulsion system must supply flow to the compressor with minimal pressure loss, distortion, or unsteadiness. Otherwise, the overall system performance will be reduced.
- For many military applications, the inlet design is also constrained by low observability requirements. To reduce the radar signature from the compressor face, a serpentine inlet is typically used to block line-of-sight.
- This can result in flow separation inside the inlet. Therefore, technologies such as active flow control that can enable more aggressive inlets can have a significant overall system benefit.

Propulsor Thrust Vectoring through Stator-Induced Circumferentially-Varying Preswirl - Funded by ONR

John Farnsworth and Miki Amitay

- Investigate a methodology of active flow control (via addition of swirl) to provide und cascade vehicles with additional maneuvering and control while reducing noise.
- Potential applications: UUV’s, Recovery, Synthetic Aperture Sonar, Torpedoes

SOMS Hybrid Spin-On Filter – Funded by SOMS Technologies (through NYSERDA)

Steve London and Miki Amitay

- Hybrid spin-on filter designed for use standard in automobile engines
- Simple design replaces conventional oil filter with no modifications to engine or installation
- Up to 25,000 miles between oil changes

Objectives
- Conduct in vivo testing of the filter to understand the physics of the oil/particles flow field, particles distributions, etc. for “realistic” engine operation.
- Hybrid spin-on filter designed for use standard in automobile engines

SOMS Hybrid Spin-On Filter

Steve London and Miki Amitay

- State of the art optical measurement techniques (PIV and PTV) are implemented using clear silicone oil and SAE 5W-30 test dust
- Particle concentrations and flow fields after passing through micro-filter will be calculated.
- Hydraulic pump simulates engine conditions, including periods of acceleration and deceleration.

Active Control of transonic flow in serpentine inlets

John Vaccaro and Miki Amitay

Fully Assembled Inlet Facility

Micro Flying “Bagel” – Funded by CATS

Bill Grossick and Miki Amitay

- MAVs are limited to 6”×6”×6” and a gross takeoff weight of 100gr.

Active Flow Control
- Flight control is achieved by active control of the flow over the stators.
- Two 20mm 3Hz piezo-discs are installed in each stator (0.2W each).

SOMS Hybrid Spin-On Filter

Steve London and Miki Amitay

- Benefits of Hybrid Filter Technology
 - The hybrid spin-on filter improves filtration efficiency leading to the absence of small particles in the engine oil.
 - It prolongs oil filter and engine life and can reduce maintenance and operating costs.
 - It reduces friction, which increases engine and fuel efficiency.
 - Due to the high filtration efficiency (in excess of 25,000 miles), the filter can be used to extend oil and filter change intervals.
 - Extended oil drains provide direct and indirect savings.