The Challenge

The Fuel Cell Manufacturing Challenge: Any time you change one or more of the following you may have a profound impact on the viability of certain manufacturing processes and systems.

- Fuel cell type
- Fuel cell or component architectures
- Materials
- Design tolerances
- Application
- Fuel cell size

The CATS Focus

The focus of our fuel cell manufacturing research is on fuel cell stacks, their materials and components, and the production and assembly thereof.

The Opportunity

- One simple example of the potential-
 - Laptop Computers
 - 4Q2006 sales of >20M units, exceeding sales of desktop computers for first time
 - 2007 sales projected at 91.7M units, and 137M units in 2010
 - Assume a modest market penetration, say 20%, that's still 27.4M stacks per year from just one application, 548 Million MEAs
 - That's 52 stacks per minute on a 24/7/365 basis, and 17 MEAs per second 24/7/365

Development of a HT PEM MEA Pilot Manufacturing Line

- Partner: Progressive Machine and Design (Victor, NY) and BASF Fuel Cell
- Sponsor: New York State Energy Research and Development Authority (NYSERDA)
- Objectives: To investigate alternative manufacturing processes and systems that will save energy, reduce costs, and improve product quality
 - Fuel cell size
 - Design tolerances
 - Manufacturing process parameters
 - Resulting MEA material attributes
 - Performance of the MEA in a stack

Energy Efficient Manufacturing Processes for HT MEAs

- Partners: Progressive Machine and Design (Victor, NY) and BASF Fuel Cell
- Sponsor: New York State Energy Research and Development Authority (NYSERDA)
- Objectives: To investigate alternative manufacturing processes and systems that will save energy, reduce costs, and improve product quality
 - UV or CO2 lasers
 - Certified class 1 laser system
 - Built in exhaust system
 - Precise linear stages

Adaptive Process Controls for MEA Pressing

- DOE target of 500,000 cars/year
- That requires that one stack be assembled every minute on a 24/7/365 basis, 7 MEAs per second
- That requires that 250,000 m² of electrode be produced each day
- We simply cannot take a day or more to assemble an automotive fuel cell stack

Another Example

- Performance of the MEA in a stack
- Resulting MEA material attributes
- Manufacturing process parameters
- MEA component material properties

Energy Efficient Manufacturing Processes for HT MEAs

- Resulting commercial laser cell
 - UV or CO2 lasers
 - High precision, high speed
 - Assist gas
 - Built in exhaust system
 - Certified class 1 laser system

Conclusions

- We cannot wait until we know all the answers to address key fuel cell manufacturing issues.
- There will be a “technology tipping point” that will result in an exponential growth of demand.
- To minimize risks employ modular, flexible manufacturing processes and systems.
- Major advances are required to make fuel cells viable on a wide-spread basis.

Acknowledgements

- BASF Fuel Cell, GmbH
- Progressive Machine and Design
- NYS Energy Research and Development Authority
- National Science Foundation
- NYS Office of Science, Technology and Innovation
- US Department of Energy
- Robotics Industries Association
- Kuka Robotics
- Applied Robotics