Table of Contents

Undergraduate Programs 306
Graduate Program 310
Information Technology

Associate Dean: David L. Spooner

Director of Program Development: Gail Gere

Program Manager: Linda Kramarchyk

Program Home Page: http://www.it.rpi.edu/

Information Technology (IT) degrees available at Rensselaer include the Bachelor of Science and the Master of Science. Opportunities for Ph.D. level work in IT are also available. Those holding these degrees are in great demand and command some of the highest starting salaries and bonuses in any profession.

Rensselaer’s IT degree programs are designed for students with an interest in computers that they wish to apply to other disciplines. Recognizing that Information Technology is the "enabler of the Information Age," Rensselaer has made IT one of its top academic priorities. The Institute has developed a highly interdisciplinary program that emphasizes IT’s application to nearly every field from science and engineering to management to humanities and social sciences.

Rensselaer’s undergraduate and graduate IT degree programs consist of two components. The first is a set of core courses that focus on the effective use of computers to solve problems. The second is the concentration area in which students employ their technical expertise to a problem domain or discipline of their choice.

Each of Rensselaer’s five schools offers concentration area options to IT students. The IT curriculum draws its coursework from each of these academic schools. Many Rensselaer faculty members representing a wide variety of the disciplines taught at the Institute contribute to this program, thereby providing students with a broad range of perspectives on IT and the breadth of its impact on the world.

Faculty*

Professors

Bailey, R.A.—Ph.D. (McGill University); coordination chemistry and chemistry of molten salts (Science).

Breneman, C.M.—Ph.D. (University of California, Santa Barbara); physical organic chemistry (Science).

Bringsjord, S.—Ph.D. (Brown University); logic, philosophical logic, philosophy of artificial intelligence (Humanities and Social Sciences).

Connor, K.—Ph.D. (Polytechnic Institute of New York); electromagnetic theory, wave propagation, plasmas for fusion research and industrial applications, finite element methods (Engineering).

Flaherty, J.E.—Ph.D. (Polytechnic Institute of Brooklyn); numerical analysis, scientific computation, parallel computation, adaptive methods (Science).

Gabriele, G.A.—Ph.D. (Purdue University); design automation, design optimization (Engineering).

Gerhardt, L.A.—Ph.D. (State University of New York at Buffalo); communication systems, digital voice and image processing, adaptive systems and pattern recognition, integrated manufacturing (Engineering).

Goldberg, M.K.—Ph.D. (Institute of Mathematics, Novosibirsk, Russia); algorithms for combinatorial optimization, experimental algorithm design and analysis, computational learning theory, graph theory (Science).

* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2006 Board of Trustees meeting.
Gowdy, J.M.—Ph.D. (West Virginia University); ecological economics, industrial organization and public regulation, regional economics (Humanities and Social Sciences).

Herron, J.—Ph.D. (Johns Hopkins University); applied mathematics, fluid mechanics, hydrodynamics, stability (Science).

Hess, D.—Ph.D. (Cornell University); science, culture, and power; social studies of alternative medicine (Humanities and Social Sciences).

Hsu, C.—Ph.D. (Ohio State University); metadatabase and information systems, Internet enterprises planning, database and knowledge-based systems, computerized manufacturing, enterprise integration and modeling, information visualization, economic evaluation of cyberspace-augmented enterprises (Engineering).

Isaacson, D.—Ph.D. (New York University); mathematical physics, biomedical applications (Science).

Kapila, A.—Ph.D. (Cornell University); applied mathematics, combustion, fluid mechanics (Science).

Lahey, R.T., Jr.—Ph.D. (Stanford University); multiphase flow and boiling heat transfer, reactor safety analysis, reactor thermal-hydraulics, and applications of chaos theory (Engineering).

Malmborg, C.J.—Ph.D. (Georgia Institute of Technology); modeling and analysis of problems in facility design, materials handling, materials flow, storage systems, simulation-based optimization methods, manufacturing systems, decision analysis (Engineering).

Miller, B.—M.F.A. (New York University Graduate Film and Television Program) (Humanities and Social Sciences).

Musser, D.—Ph.D. (University of Wisconsin); programming methodology, generic software libraries, formal methods of specification and verification, automated theorem proving (Science).

Napolitano, J.—Ph.D. (Stanford University); experimental nuclear and particle physics (Science).

Nierzwicki-Bauer, S.A.—Ph.D. (University of New Hampshire); plant molecular biology; subsurface microbiology (Science).

Restivo, S.—Ph.D (Michigan State University) information and society; social robotics, nanotechnology and social organization; the knowledge society (Humanities and Social Sciences).

Roberge, W.G.—Ph.D. (Harvard University); theoretical astrophysics (Science).

Rolnick, N.B.—Ph.D. (University of California, Berkeley) music composition including interaction between computers and performers, distributed performance (over I2 or other networking technologies), computer as a musical instrument (Humanities and Social Sciences).

Salerno, J.C.—Ph.D. (University of Pennsylvania); bioenergetics, spectroscopy, metalloproteins (Science).

Siegel, D.—Ph.D. (Columbia University) economics of technological change, productivity analysis, corporate social responsibility (Humanities and Social Sciences).

Siegmann, W.L.—Ph.D. (Massachusetts Institute of Technology); applied mathematics, wave propagation (Science).

Spooner, D.L.—Ph.D. (Pennsylvania State University); database systems, database security, and database browsing and visualization (Science).

Wait, S.C., Jr.—Ph.D. (Rensselaer Polytechnic Institute); spectroscopy, vibrational and electronic spectroscopy (Science).

Warden, J.T.—Ph.D. (University of Minnesota); ESR spectroscopy, photosynthetic electron transport mechanisms (Science).

Willemain, T.—Ph.D. (Massachusetts Institute of Technology); probabilistic modeling, data analysis, forecasting (Engineering).
Clinical Professors
Hughes, G.—Ph.D. (Princeton University); global economics, economics of information technology (Management).
Younessi, H.—Ph.D. (Swinburne University of Technology, Australia); computer and information sciences, software and systems engineering (Rensselaer at Hartford).

Associate Professors
Adali, S.—Ph.D. (University of Maryland); heterogenous distributed information systems, database systems (Science).
Breyman, S.—Ph.D. (University of California, Santa Barbara); political economy of environment, science, and society (Humanities and Social Sciences).
Bystroff, C.—Ph.D. (University of California, San Diego); bioinformatics, protein folding, computational biology (Science).
Carothers, C.—Ph.D. (Georgia Institute of Technology); computer simulation, parallel simulation, parallel systems (Science).
Durgee, J.—(University of Pittsburgh) (Management).
Embrechts, M.J.—Ph.D. (Virginia Polytechnic Institute); fusion engineering, applied chaos theory, neural networks (Engineering).
Fortun, K.—Ph.D. (Rice University); international politics, environmentalism and the law (Humanities and Social Sciences).
Hanna, M.H.—Ph.D. (University of Illinois); slime mold development and genetics (Science).
Kalsher, M.J.—Ph.D. (Virginia Polytechnic Institute and State University); human factors, industrial/organizational psychology, applied experimental psychology (Humanities and Social Sciences).
Krishnamoorthy, M.S.—Ph.D. (Indian Institute of Technology); programming languages, analysis of algorithms (Science).
Krueger, T.—M.Arch. (Columbia University); human-environment interaction, design (Architecture).
Leifer, R.—Ph.D. (University of Wisconsin); organizational behavior and organizational design, management information systems (Management).
Massie, W.—M.Arch. (Columbia University); architectural design, advanced computer applications and emerging technologies, computerized construction, architectural practice (Architecture).
Mistur, M.—B.Arch. (Rensselaer Polytechnic Institute); architectural design (Architecture).
Nambisan, S.—Ph.D. (Syracuse University); information systems (Management).
Parsons, R.H.—Ph.D. (Oregon State University); cellular physiology, epithelial transport (Science).
Phan, P.—Ph.D. (University of Washington); strategic management, entrepreneurship (Management).
Piper, B.R.—Ph.D. (University of Utah); computer-aided geometric design, numerical analysis, computer graphics (Science).
Ravichandran, T.—Ph.D. (Southern Illinois University, Carbondale); management information systems (Management).
Saulnier, G.J.—Ph.D. (Rensselaer Polytechnic Institute); circuits and electronics, communication systems, digital signal processing (Engineering).
Woodhouse, E.J.—Ph.D. (Yale University); policy of science and technology, decision making (Humanities and Social Sciences).

Clinical Associate Professors
Grice, R.—Ph.D. (Rensselaer Polytechnic Institute); information usability, human-computer interfaces, applications of computers to technical communication, information development in industry (Humanities and Social Sciences).
Heim, J.—Ph.D. (University at Albany); money and banking, international economics (Humanities and Social Sciences).
Peters, L.B.—Ph.D. (Rensselaer Polytechnic Institute); management information systems (Management).
St. John, W.C.—Ph.D. (Rensselaer Polytechnic Institute) accounting information systems, systems compliance with the Sarbanes-Oxley Act (Management).
Triscari, T.—Ph.D. (Rensselaer Polytechnic Institute); information systems (Management).

Assistant Professors
Akera, A.—Ph.D. (University of Pennsylvania); history of scientific and technical computing, innovation studies (Humanities and Social Sciences).
Bustamante, N.—M.F.A. (San Francisco Art Institute) art (Humanities and Social Sciences).
De, S.—Sc.D. (Massachusetts Institute of Technology); numerical methods in engineering, multimodal virtual environments, fast computational techniques of MEMS (Engineering).
Hübscher-Younger, T.—Ph.D. (Auburn University); computer-supported collaborative learning; educational technology; human-computer interaction; usability evaluation; software engineering; web application and interface design and development (Humanities and Social Sciences).
Korniss, G.—Ph.D. (Virginia Polytechnic Institute); theoretical and computational physics (Science).
Magdon-Ismail, M.—Ph.D. (California Institute of Technology); machine learning, computational finance, bioinformatics (Science).

Clinical Assistant Professors
Boyer, K.—Ph.D. (McGill University); IT, cities and social change; gender, work, and the politics of technology (Humanities and Social Sciences).
Brown, R.H.—M.S.E.E. (University of Illinois); computer communication networks, network management, client/server architectures (Rensselaer at Hartford).
Hollinger, D.L.—M.S. (Rensselaer Polytechnic Institute); machine learning, AI applications for the World Wide Web, genetic algorithms, Web programming (Science).
Sands, R.—M.S., MBA (University at Albany); organizational behavior and human resource management (Management).

Other
Kolb, J.—P.E., M.Eng. (Rensselaer Polytechnic Institute); Management of Information Systems (Chief Information Officer, DotCIO) (Management).
Miner, J.—M.S. (Stevens Institute of Technology); information technology management, enterprise computing architectures (Director-IACS, Integrated Administrative Computing Services, DotCIO) (Management).

Undergraduate Programs
The objectives of the BSIT curriculum are to prepare students to enter a rewarding career in IT and to pursue further professional and/or graduate education. The program:

- Synthesizes computing, systems, management, and humanities.
- Extends the student’s horizons from the focused core of IT to the disciplinary knowledge of a student chosen application domain.

It also promotes the integration of traditional education with engaged learning and the spirit of entrepreneurship that pervades the IT industry. The program is designed especially for students with interests outside the technical world, but nevertheless requires substantial technical talents and skills.
Baccalaureate Programs

Completion of the B.S. in Information Technology requires a total of 128 credit hours, of which 56 credits constitute an IT Core and 32 credits are devoted to a concentration. The remaining credit hours fulfill Rensselaer degree requirements. The IT core requirements establish a solid foundation for applying IT to any discipline. The Rensselaer requirements ensure the degree's breadth and its consistency with long-established Rensselaer traditions. The required concentration provides an opportunity for in-depth study of an IT application area. Concentration options include arts, communication and networks, law, management information systems, medicine, psychology, and numerous others. In consultation with a faculty adviser, students may also design their own concentration through the selection of courses that match their individual interests.

The specific requirements for the B.S. in Information Technology are illustrated below.

Math and Science Requirements: (24 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-1010</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>CSCI-1100</td>
<td>Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>CSCI-1200</td>
<td>Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Physical-Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life-Science Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Humanities and Social Sciences Requirements: (24 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEC-1210</td>
<td>Information in History and Society</td>
<td>4</td>
</tr>
<tr>
<td>ITEC-1220</td>
<td>Politics and Economics of IT</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Humanities Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Social Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Free Elective Requirements: (12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Free Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

IT Core Requirements: (35–40 credits)

Pick either the ECSE-2610/ENGR-2350/ECSE-2660 sequence or the CSCI-2300/2500 sequence:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE-2610</td>
<td>Computer Components and Operations</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-2350</td>
<td>Embedded Control</td>
<td>4</td>
</tr>
<tr>
<td>ECSE-2660</td>
<td>Computer Architecture, Networking, and OS</td>
<td>4</td>
</tr>
<tr>
<td>or</td>
<td>CSCI-2500</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Organization</td>
<td>4</td>
</tr>
<tr>
<td>CSCI-2300</td>
<td>Data Structures and Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>ITEC-2110</td>
<td>Exploiting the Information World</td>
<td>4</td>
</tr>
</tbody>
</table>

1 We encourage students to take ECON-296x — The Economics of ITEC as one of their H&S electives prior to taking ITEC-4310 — Managing IT Resources.

2 If this sequence is chosen, ENGR-2350 can be counted towards the free elective requirement.
IT Technology Elective (one of):
CSCI-4380 Database Systems ... 4 credits
DSES-4530 Information Systems .. 4 credits
ITEC-4310 Managing IT Resources .. 4 credits
ITEC-2960 Creativity and IT 1 ... 4 credits
ITEC-2210 Intro. to Human Computer Interaction 4 credits

Probability and Statistics Elective (one of):
ENGR-2600 Modeling and Analysis of Uncertainty 3 credits
MGMT-2100 Statistical Methods .. 4 credits
PSYC-2310 Experimental Methods and Statistics ... 4 credits
ITEC-4100 IT Studio/Capstone Experience ... 4 credits

Student-Selected Concentration: (32 credits)
Concentration course ... 4 credits
Concentration Capstone Experience ... 4 credits

The Concentrations from which students may choose are as follows:
Arts Entrepreneurship Medicine
Building Sciences (Architecture) Finance Pre-law
Civil Engineering Industrial Engineering Psychology
Communication Machine and Computational Science and Technology Studies:
Communication and Networks Learning Information and Society
Computer Hardware Management Information Systems Science Informatics
Economics Mechanical/Aeronautical Special Interest
E-Commerce Engineering Web Technologies

The above list, and the associated required courses for each Concentration are available on the IT program web page www.it.rpi.edu. The list expands as new Concentrations are developed. Students wishing to devise a special interest Concentration specific to individual interests should consult their faculty advisers.

Each Concentration also stipulates an appropriate probability and statistics course for students who pursue it. This course is taken as part of the IT core. Courses that fulfill this requirement include: ENGR-2600, MGMT-2100 and PSYC-2310.

1 A special topics course.
Below is a typical, but not required, eight-semester course schedule for obtaining the B.S. in IT.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEC-1210 Information in History and Society</td>
<td>ITEC-1220 Politics and Economics of IT</td>
</tr>
<tr>
<td>CSCI-1100 Computer Science I</td>
<td>CSCI-1200 Computer Science II</td>
</tr>
<tr>
<td>MATH-1010 Calculus I</td>
<td>Math Elective</td>
</tr>
<tr>
<td>Physical-Science Elective</td>
<td>Life-Science Elective</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEC-2960 Creativity and IT</td>
<td>ITEC-2210 Intro. to Human Computer Interaction</td>
</tr>
<tr>
<td>ITEC-2110 Exploiting the Information World</td>
<td>Concentration Course</td>
</tr>
<tr>
<td>One of:¹</td>
<td>One of:¹</td>
</tr>
<tr>
<td>ECSE-2610 Computer Components and Operations</td>
<td>ECSE-2660 Computer Architecture, Networking and OS</td>
</tr>
<tr>
<td>and</td>
<td>or</td>
</tr>
<tr>
<td>ENGR-2350 Embedded Control</td>
<td>CSCI-2300 Data Structures and Algorithms</td>
</tr>
<tr>
<td>or</td>
<td>Probability and Statistics Elective (one of):</td>
</tr>
<tr>
<td>CSCI-2500 Computer Organization</td>
<td>ENGR-2600 Modeling and Analysis Uncertainty</td>
</tr>
<tr>
<td></td>
<td>MGMT-2100 Statistical Methods</td>
</tr>
<tr>
<td></td>
<td>PSYC-2310 Experimental Methods and Statistics</td>
</tr>
</tbody>
</table>

¹ Students must select either the ECSE-2610, ENGR-2350, ECSE-2660 sequence or the CSCI-2500, CSCI-2300 sequence. Students cannot mix courses from these sequences. Students interested in pursuing the MS in IT degree should take the CSCI-2500, CSCI-2300 sequence. CSCI-2300 is required for admission into the MS in IT program. If the CSCI sequence is chosen, the math elective in Semester II must be MATH-2800 Intro. to Discrete Structures.

² See Hum. and Soc. Sci. Elective requirements in H&SS section of the catalog.

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEC-4310 Managing IT Resources</td>
<td>Hum. and Soc. Sci. Elective ²</td>
</tr>
<tr>
<td>Hum. and Soc. Sci. Elective ²</td>
<td>Concentration Course</td>
</tr>
<tr>
<td>IT Elective (one of):</td>
<td>Concentration Course</td>
</tr>
<tr>
<td>CSCI-4380 Database Systems</td>
<td>Free Elective</td>
</tr>
<tr>
<td>DSES-4530 Information Systems</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEC- 4100 IT Capstone Experience</td>
<td>Concentration Capstone Experience</td>
</tr>
<tr>
<td>Concentration Course</td>
<td>Concentration Course</td>
</tr>
<tr>
<td>Hum. and Soc. Sci. Elective ²</td>
<td>Hum. and Soc. Sci. Elective ²</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
</tbody>
</table>

Only free electives and six credits of the H&SS electives may be taken with the Pass/No Credit option.

If a student chooses to pursue a dual degree with Information Technology as one of the degrees, the dual degree must be the degree that is closest to the student’s Concentration. For example, if a student’s Concentration is Psychology then the dual degree would need to be in Psychology. Currently, Electronic Media, Arts & Communication (EMAC) and Management are not available as a dual degree option.
Minor Programs
The IT minor requires four courses:

- One of the following two:
 ITEC-1210/IHSS-1210 Information in History and Society
 ITEC-1220/IHSS-1220 Politics and Economics of IT

- ITEC-2110 Exploiting the Information World

- Two of the following four:
 CSCI-1200 Computer Science II *
 ITEC-2210 Introduction to Human Computer Interaction
 ITEC-4310 Managing IT Resources **
 PHYS-2050 Science of Information Technology

Graduate Program
Rensselaer’s Master of Science in Information Technology balances the study of management strategies and technology leadership with advanced course work in an IT concentration. Students complete a suite of Core and Capstone courses and also select three to five additional courses to complete their Concentrations.

Ten Concentrations are currently available at Rensselaer’s Troy campus: Networking, Management Information Systems, Software Design, Financial Engineering, Database Systems, E-business Engineering, Bioinformatics, Information Systems Engineering, Human-Computer Interaction and a Research concentration as part of the Ph.D.

Programs are individually tailored to accommodate students with a variety of entering backgrounds and career goals. The M.S. in IT can be completed with two terms of intensive study. A three-term option with an internship is also available.

The IT master’s is also available at the Hartford campus in Hartford, Connecticut and via distributed delivery complements of Rensselaer’s Office of Education for Working Professionals (EWP). Students enrolling at Hartford or through EWP should consult the following web sites for concentrations, course offerings, and degree requirements:

- Hartford: www.rh.edu
- EWP: www.pde.rpi.edu

Applicants are expected to have prior academic records that indicate their ability to excel in advanced coursework. Prospective students should also have completed the equivalent to the following three Rensselaer courses prior to enrollment:

- CSCI-1100 Computer Science I (number systems, basic computer architecture, stepwise refinement of algorithms, functions and parameter passing, basic programming concepts through two-dimensional arrays, and pointer basics using C++)

- CSCI-1200 Computer Science II (pointers, classes, operator overloading, deep vs. shallow copy constructors, inheritance, file I/O, templates in C++, introductory algorithm analysis, and data structures)

- CSCI-2300 Data Structures and Algorithms (advanced topics including mathematical induction and

* Cannot be used by CSCI and CSYS majors to satisfy this requirement.

** Cannot be used by MGMT majors to satisfy this requirement.
its application to algorithm design, linear structures, trees and balanced trees, heaps and priority queues, graphs and graph algorithms, backtracking, divide-and-conquer, and greedy algorithms.)

The Graduate Record Examination (GRE) is required of all full and part-time applicants in Troy. Substitution of the Graduate Management Admissions Test (GMAT) may be requested. Applicants to the Hartford campus will be notified in writing if results of the Graduate Record Examination are required.

Master’s Program Requirements

Students admitted to the M.S. in IT develop an approved Plan of Study that includes the following:

- Ten courses in IT (a minimum of thirty credits)
- A minimum of six courses (18 credit hours or more) at the graduate level (6xxx-level courses)
- Five Core courses; one from each of the five Core Areas
- A minimum of three courses (nine credit hours or more) in an approved Concentration
- One elective approved by the adviser to add further depth to the degree
- The IT Master’s Capstone course

The research and bioinformatics concentrations require a master’s thesis in place of the capstone course.

The Core and Concentration courses are designed to accommodate a wide range of backgrounds. If students have previously completed the basic required Core course, they must then complete the next level required course to add depth in that core area. For example, if an equivalent course to Database Systems was completed in a prior degree, the Core area requirement could be satisfied by taking Enterprise Database Systems. Students may request transfer credit only for the elective, subject to adviser approval. Additionally, no more than half of all credits used towards the M.S. in IT degree may be taken from courses offered by the Lally School of Management and Technology. These courses are coded MGMT.

The M.S. in IT Master’s Capstone course integrates the knowledge and professional practice of IT Core and Concentration courses. The Capstone utilizes an Information Technology Team Project with a real organization to practice the major concepts of the IT master’s degree. The Team Project involves strategic and business planning, systems development, and technology implementation. Expertise in database systems, networking, software design, decision sciences, management of technology, human computer interaction, and ethics are applied within a framework of global e-business strategy.

Core courses are generally taken in the fall and Concentration courses in the spring. Full-time students normally begin in the fall term and take five courses in the fall and five the following spring to complete the program. Part-time students typically complete the program in two and one-half years of continuous study. Students may elect to extend the program to three semesters enabling the completion of two concentrations (12 courses) and a paid summer or summer/fall co-op assignment.

Rensselaer currently offers numerous Ph.D. degrees with significant IT related research, e.g. computational chemistry and physics, science and technology studies, decision sciences, applied mathematics, and human-computer interaction, among many others. Students who are planning doctoral study may choose to apply simultaneously for admission to the Ph.D. in the relevant Rensselaer department and also for the M.S. in IT. Once admitted to both, the student and the Ph.D. and M.S. advisers determine if the regular IT curriculum or the IT Research Track is preferred. If the Research Track is chosen, the student and the adviser select a set of concentration courses that lead to an IT intensive Master’s Thesis in place of the IT Master’s Capstone course.
IT Core Requirements

To acquire a breadth of IT experience, master’s degree students take the five Core courses listed below. Alternate courses are also listed for those who have previously completed the required Core course. Also noted is the usual term in which the required Troy campus Core course is offered. Course offerings change frequently to keep pace with rapid advancement in IT; some courses are delivered in alternate years. Please see the Troy IT web site for the most current information: www.it.rpi.edu.

<table>
<thead>
<tr>
<th>IT Core Area</th>
<th>Course Name</th>
<th>Term(s) Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Systems</td>
<td>CSCI-4380 Database Systems</td>
<td>Fall/Spring</td>
</tr>
<tr>
<td>Networking</td>
<td>ECSE-4670 Computer Communication Networks</td>
<td>Fall</td>
</tr>
<tr>
<td>Software Design</td>
<td>ECSE-6770 Software Engineering I</td>
<td>Fall</td>
</tr>
<tr>
<td>Management of Technology</td>
<td>ITEC-6300 Business Issues for Engineers and Scientists</td>
<td>Fall/Spring</td>
</tr>
<tr>
<td>Human-Computer Interaction</td>
<td>COMM-6420 Foundations of HCI Usability</td>
<td>Fall</td>
</tr>
</tbody>
</table>

IT Advanced Core

Students who have already completed the Core courses listed above select one of the advanced courses noted below:

<table>
<thead>
<tr>
<th>Advanced Core</th>
<th>Course Name</th>
<th>Term(s) Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Systems</td>
<td>DSES-6520 Enterprise Database Systems</td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td>CSCI-6460 Advanced Database Management Topics</td>
<td>Spring</td>
</tr>
<tr>
<td>Networking</td>
<td>ECSE-6600 Internet Protocols</td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td>ECSE-6660 Broadband Networks</td>
<td>Spring</td>
</tr>
<tr>
<td>Software Design</td>
<td>CSCI-6090 Generic Software Design</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>CSCI-6320 Graphical User Interfaces</td>
<td>Fall</td>
</tr>
<tr>
<td>Management of Technology</td>
<td>MGMT-6610/ DSES-6470 Global Strategic Management of Technical Innovation</td>
<td>Fall/Spring</td>
</tr>
<tr>
<td></td>
<td>MGMT-6810 Management of Technical Projects</td>
<td>Fall</td>
</tr>
<tr>
<td>Human Computer Interaction</td>
<td>COMM-6750 Communication Design for WWW</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>COMM-6760 Electronic Coaching Systems</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Concentration Requirements

The IT faculty designed the IT Concentrations to provide an in-depth, leading-edge experience in the application of information technology. Students often select areas that complement their prior backgrounds (e.g., students with strong computer backgrounds may select MIS or e-business). Alternately, some students select a Concentration related to their prior backgrounds and then expand on that background through higher-level course work. The course taken to complete a Core requirement does not count toward the Concentration.

Rensselaer’s course offerings are dynamic and new courses are developed each term, making course listings subject to change. For current status, please visit www.it.rpi.edu.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Course Number and Name</th>
<th>Term(s) Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networking</td>
<td>Select three of the following courses:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSCI-4220 Network Programming</td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td>ECSE-6660 Broadband and Optical Networks</td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td>ECSE-6670 Local Computer Networks and Multiaccess Communication</td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td>ECSE-4900 Experimental Networking</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>ECSE-6600 Internet Protocols</td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td>CSCI-4900 Computer Networking II</td>
<td>Fall/Spring</td>
</tr>
<tr>
<td></td>
<td>ECSE-6820 Queuing Systems & Applications</td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td>CSCI-6500 Distributed Computing Over the Internet</td>
<td>Spring</td>
</tr>
</tbody>
</table>
ECSE-6900 Mobile Wireless Networks
CSCI-6510 Distributed Algorithms & Systems
CSCI-6900 Network Security
CSCI-6900 Parallel & Distributed Simulation
Financial Engineering
MATH-4740 Intro. to Financial Math & Engineering
DSES-6630 Financial Mathematics and Simulation
MGMT-4370 Risk Management
With Advisor approval, choose two additional courses for a total of five courses:
MGMT-6370 Derivatives Markets
MGMT-6240 Financial Trading and Investing
MGMT-6410 Investment
MATH-4800 Numerical Computing
MATH-4820 Intro to Numerical Methods for Diff. Eq.
MATP-4620 Mathematical Statistics
MATP-4700 Mathematical Models of Operations Research
MATP-4820 Computational Optimization
MATP-6640 Linear Programming
DSES-6100 Time Series Analysis
ECON-6570 Econometrics
ECON-4120 Quantitative Analysis
CSCI-6900 Computational Finance
Human-Computer
Select three of the following courses:
COMM-6760 Electronic Coaching Systems
COMM-6750 Communication Design for the WWW
COMM-6810 Studio Design in HCI
CSCI-6320 Graphical User Interfaces
COMM-6770 User Centered Design
Database Systems Design
Select three of the following courses:
CSCI-4020 Computer Algorithms
CSCI-6460 Advanced Database Management Topics
CSCI-6390 Database Mining
DSES-6180 Knowledge Discovery with Data Mining
DSES-6520 Enterprise Database Systems
CSCI-6900 Multimedia Database Systems
DSES-6530 Decision Support & Expert Systems
ECSE-6710 Fuzzy Sets & Expert Systems
CSCI-4150 Introduction to AI
Software Design
Select three of the following courses:
MGMT-6170 Advanced Systems Analysis and Design
CSCI-4440 Software Design and Documentation
CSCI-6090 Generic Software Design
CSCI-6320 Graphical User Interfaces
ECSE-6780 Software Engineering II
CSCI-4220 Network Programming
COMM-6810 Studio Design in HCI
CSCI-6500 Distributed Computing over the Internet
CSCI-6960 Program Analysis for Software Tools