Table of Contents

Degrees Offered and Associated Departments 244
Overview of Undergraduate Programs 244
Overview of Graduate Programs 246
The Arts 247
Cognitive Science 252
Economics 262
Language, Literature, and Communication 268
Science and Technology Studies 280
Interdisciplinary Degree Programs 291
Electronic Media, Arts, and Communication 291
Ecological Economics, Values, and Policy 293
Minds and Machines Program 296
Product Design and Innovation 299
School of Humanities and Social Sciences

Dean: John P. Harrington

Associate Dean of Undergraduate Programs and Curriculum Initiatives: C.L. Odell

Associate Dean of Graduate Programs and Research Initiatives: (vacant)

Director of Student Services: Elizabeth Large

Director of Program Development: Dean Button

Director of External Communication: Donald Moore

School of Humanities and Social Sciences Home Page: http://www.hss.rpi.edu

In an historic technological institution, the Rensselaer School of Humanities and Social Sciences (H&SS) offers exciting new institute research areas as well as broad university educational opportunities. The School's five departments offer innovative and interdisciplinary programs of study at both the undergraduate and graduate levels. The undergraduate programs include: majors in humanities, social science, and arts disciplines; collaborations and dual majors for students of all schools; and a core curriculum that is a common element in the course of study for all Rensselaer students. The graduate programs in H&SS offer unique opportunities for study of the technological world, its impact on society, and its potential contributions to social, cultural, and artistic goals. All H&SS students have a broad choice of electives representing Rensselaer's global vision and commitment to personal excellence though new studies in arts, communications, and culture studies as well as to the traditional areas of liberal arts and social sciences.

H&SS programs at Rensselaer give every student close contact with outstanding faculty members. Those faculty—scholars and practitioners themselves—create programs that are distinctive for research applications at both the undergraduate and graduate levels. Students also have access to field work and studio experiences, internships and professional co-op opportunities, outstanding electronic laboratories and computer facilities, and, above all, opportunities to cross boundaries and to develop new interdisciplinary projects. These programs integrate the intellectual depth and the practical experience needed for leadership careers in business, non-profit corporations, government and government-related organizations, higher education, and arts. Our students do not only participate in the technological world: they create it, and they shape it.

Undergraduate and graduate degree programs are offered in five-degree granting departments, including Arts; Cognitive Science; Economics; Language, Literature, and Communication; and Science and Technology Studies. In addition, students can major in interdisciplinary programs that integrate scientific and technical tools with the arts, social sciences, communication, and humanities. These include Electronic Media, Arts, and Communication (EMAC); Minds and Machines; Product Design and Innovation (PDI); and Ecological Economics, Values, and Policy (EEVP).
Degrees Offered and Associated Departments

Communication
Communication and Rhetoric
Ecological Economics
Ecological Economics, Values, and Policy
Economics
Electronic Arts
Electronic Media, Arts, and Communication
Minds and Machines
Philosophy
Product Design and Innovation
Psychology
Science, Technology, and Society
Science and Technology Studies
Technical Communication

Language, Literature, and Communication
Language, Literature, and Communication
Economics
Interdisciplinary
Economics
Arts
Interdisciplinary
Interdisciplinary
Cognitive Science
Interdisciplinary
Cognitive Science
Science and Technology Studies
Science and Technology Studies
Language, Literature, and Communication

Overview of Undergraduate Programs

Individual departments in the School of Humanities and Social Sciences offer Bachelor of Science degree programs in each of the following curricula: Communication, Economics, Electronic Arts, Philosophy, Psychology, and Science and Technology Studies.

In addition, a number of interdisciplinary programs are also available. These programs are offered jointly between two or more departments within the school or with other Institute schools. H&SS interdisciplinary degree programs include the following, all of which are explained in greater detail under the heading Interdisciplinary Programs and Research at the end of the H&SS section of this catalog.

- Electronic Media, Arts, and Communication (EMAC) – The departments of Arts and of Language, Literature, and Communication (LL&C) offer this B.S. degree, which combines theory and practice through electronic media arts studio and theory courses.

- Ecological Economics, Values, and Policy (EEVP) – The departments of Economics and of Science and Technology Studies (STS) offer this B.S. degree. It combines ecological economics, environmental policy studies, and social and cultural theory and practice.

- Minds and Machines (M&M) – This B.S. degree based in the department of Cognitive Science includes substantial hands-on and research-based work in artificial intelligence, psychology, cognitive science, logic, and philosophy.

- Product Design and Innovation (PDI) – This innovative design program offers a dual major with three possibilities, Mechanical Engineering and STS, Engineering Science and STS, or Building Sciences and STS. This program combines engineering or architectural disciplines, STS courses, and design studios.
In all curriculum areas, H&SS strives to provide flexibility whenever possible. As part of this effort, the department offers the Independent Study Program, which fills specialized educational needs in areas that regular departmental offerings do not adequately serve. Independent Study is an individualized reading or research program that a student proposes to a faculty member whose expertise covers a specific area of interest. Students interested in Independent Study must meet a number of conditions including:

- Demonstration of an ability to work independently as well as completion of the prerequisites needed to undertake the project successfully.
- Evidence that no equivalent course is available at Rensselaer or at any of the consortium institutions in the Capital District or that the student is unable to schedule such a course due to unusual curricular demands.
- The faculty member has sufficient time to supervise the proposed course of study.
- Development of a written agreement spelling out the scope of the work to be done, the expected deliverables, and the evaluation criteria to be applied.
- Provision of a description of the amount of work expected and an understanding that the level at which it is to be completed must be similar to the demands of an equivalent course.
- The ability of faculty members to place additional constraints on the participation in the Independent Study.

**H&SS Core Program**

As part of their B.S. degree program, all Rensselaer undergraduates take a selection of H&SS courses referred to as the H&SS core. This core is the foundation of undergraduate education. In it, students develop the skills necessary for personal and professional success, and they also begin to explore the social and cultural areas of study and issues of debate that are important in the global society of the twenty-first century.

The core consists of 24 credit hours, or six courses distributed to afford students a breadth of perspective across the various disciplines as well as a more in-depth experience in at least one area. Engineering students automatically take two of the 24 credit hours as professional development in their engineering design sequence and take a two-credit H&SS professional development course in their junior year.

To ensure breadth in the core courses, students must select at least two courses (eight credit hours) from each of the lists below.

**Humanities**

<table>
<thead>
<tr>
<th>Humanities</th>
<th>Code</th>
<th>Social Sciences</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign Languages</td>
<td>LANG</td>
<td>Economics</td>
<td>ECON</td>
</tr>
<tr>
<td>Literature</td>
<td>LITR</td>
<td>Science and Technology Studies, Social</td>
<td>STSS</td>
</tr>
<tr>
<td>Communication</td>
<td>COMM</td>
<td>Psychology</td>
<td>PSYC</td>
</tr>
<tr>
<td>Writing</td>
<td>WRIT</td>
<td>Interdisciplinary Studies</td>
<td>IHSS</td>
</tr>
<tr>
<td>Arts</td>
<td>ARTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philosophy</td>
<td>PHIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science and Technology Studies, Humanities</td>
<td>STSH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary Studies</td>
<td>IHSS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H&SS interdisciplinary courses may be substituted for courses in either category.

To ensure depth in the H&SS core, students must also take at least two courses within a single area code (STSH and STSS can be counted as a single area), at least one of which is taken at an advanced level (above 1000). No course within the depth sequence may be taken as Pass/No Credit.
No more than three 1000-level H&SS courses may be applied toward the H&SS core requirement, no more than six credits may be taken as Pass/No credit, and at least one course (four credits) must be at the 4000 level.

Students entering Rensselaer in their first year may transfer up to two H&SS courses (up to eight credit hours) toward their H&SS core requirement (including Advanced Placement credit). Transfer students from an accredited collegiate program who have completed at least one college year but who come to Rensselaer with first-year status may qualify for additional core transfers at the discretion of the H&SS curriculum adviser.

Transfer students entering Rensselaer at the sophomore level or above are not limited in the number of courses they may transfer for H&SS core credit. All others must take at least 16 credit hours of their H&SS core at Rensselaer.

Enrolled Rensselaer students wishing to take an H&SS course for credit at another accredited institution must obtain prior approval for the course from the core curriculum adviser. Applicants must furnish a catalog description of the proposed course and a completed copy of Rensselaer’s Transfer Credit Approval form to the core curriculum adviser. A maximum of two courses (up to eight credit hours) of transfers is allowed (including AP courses).

Special Undergraduate Opportunities
Accelerated Prelaw Program – This opportunity is offered within the Department of STS in cooperation with Albany Law School and other law schools. For additional details, see the Science and Technology Studies section of this catalog.

Overview of Graduate Programs
The School of Humanities and Social Sciences offers both master’s and doctoral level programs. In addition, it provides a selection of special certificate program opportunities.

Master’s Programs
Within H&SS, three types of master’s degrees are available. Among these are 30-credit-hour M.S. degrees, offered within the departments of Language, Literature, and Communication, Economics, and Science and Technology Studies.

Another 30-credit-hour Professional Master’s program is intended for individuals already in the work force who are seeking a professional focus. Professional Master’s are available in Ecological Economics, Values, and Policy (EEVP). Finally, H&SS offers a 60-credit-hour Master of Fine Arts in Electronic Arts through the Arts Department.

Doctoral Programs
Programs leading to the Doctor of Philosophy degree (Ph.D.) are offered in Cognitive Science, Ecological Economics, Science and Technology Studies, and Communication and Rhetoric. Individual courses and opportunities for directed study are also available in other areas.

Special Graduate Opportunities
Certificate Programs – The Department of LL&C offers two specialization certificates, one in Graphics and the other in Human-Computer Interaction, as options in the master’s degree in technical communication.
The Arts
Chair: Kathy High

Director of Graduate Studies: Tomie Hahn
Director of iEAR Studios: Curtis Bahn

Department Home Page: http://www.arts.rpi.edu/

The Department of the Arts offers a B.S. in Electronic Arts and a graduate program leading to an M.F.A. in Electronic Arts. Also offered jointly with the Department of Language, Literature, and Communication is a B.S. in Electronic Media, Arts, and Communication.

Within this department, studio courses engage students in hands-on activities that stress creative and expressive development. They also encourage students to develop their perceptual sensitivity, as well as build the confidence to apply creative exploration and problem-solving skills to a wide range of aesthetic challenges. In addition to a full complement of traditional disciplines such as drawing, painting, sculpture, music, and acting, the department offers courses in electronic media including digital video, computer imaging and animation, interactivity, multimedia installation, and computer music.

Research Innovations and Initiatives

Arts department faculty members take varying approaches to the use of electronic media in artistic creation and performance. All are active artists/theoreticians whose works are represented internationally in museums, galleries, and performances.

Arts students are required to become familiar with creative tools in a variety of electronic media and are encouraged to work with combinations of media. The center of such creative work is the Integrated Electronic Arts at Rensselaer (iEAR) Studios, which include professional quality facilities in electronic and computer music, digital video production and post production, computer imaging and animation, interactive media, installation art, and performance art. In addition, qualified students in the M.F.A. program may use elective credits to explore Rensselaer’s extensive technological resources. Numerous opportunities to engage in creative or research projects with students or faculty from other departments or schools within the Institute are also available.

Faculty*

Professors
Canier, C.—M.F.A. (Boston University); painting, drawing.
Century, M.—M.A. (University of California, Berkeley); musicology, music composition, improvisation and performance.
Goebel, J.—M.A. (Staatliche Hochschule für Music und Theater); music composition and performance.
Kagan, L.—M.A. (University at Albany); studio arts.
Miller, B.—M.F.A. (New York University Graduate Film and Television Program); video art, media art.
Rolnick, N.—Ph.D. (University of California, Berkeley); music composition, electronic and computer music, electronic arts.

Distinguished Research Professor of Music
Oliveros, P.—Honorary Dr. of Music (University of Maryland, Baltimore County); music composition, electronic music, improvisation.

* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2006 Board of Trustees meeting.
Associate Professors

Bahn, C.—Ph.D. (Princeton University); computer music and interactive performance.

Hahn, T.—Ph.D. (Wesleyan University); ethnomusicology, Japanese & contemporary music and dance, choreography.

High, K.—M.A.H. (SUNY-Buffalo, Center for Media Study): video, film, photography/production and theory.

Ruiz, K.—M.A. (New York University); interactive simulation, game studies, digital photography, and emerging multidisciplinary genres.

Staniszewski, M.—Ph.D. (Graduate School and University Center, City University of New York); art history and critical theory.

Vamos, I.—M.F.A. (University of California at San Diego); video, film production and theory.

Assistant Professors

Bustamante, N.—M.F.A. (San Francisco Art Institute); new genres, performance art, video, installation.

Lawson, S.—M.F.A. (School of the Art Institute of Chicago); animation, virtual reality, interactive installation.

Clinical Professors

Gibson, D.—M.M. (Yale School of Music); music history and theory, orchestra performance, cello.

Shur, P.—Ph.D. (St. Petersburg Institute of Theatre, Music and Film); theatre.

Undergraduate Programs

At Rensselaer, the Department of the Arts offers bachelor’s degree programs in Electronic Arts, Information Technology-Arts, and Electronic Media, Arts, and Communication (EMAC). Information and requirements specific to each program are described below.

Baccalaureate Programs

As explained in the Humanities and Social Sciences introduction, all baccalaureate students take 24 credit hours of core courses. The Institute also requires all students to complete a 24-credit-hour math/science requirement. Required courses in mathematics and sciences are: MATH-1500 Calculus I for Humanities and Social Science, MATH-1620 Contemporary Ideas in Math, CSCI-1100 Computer Science or CSCI-1010 Introduction to Computer Programming, and BIOL-1010, Introduction to Biology. MATH-1010 Calculus I and MATH-1020 Calculus II may be substituted for MATH-1500 and MATH-1620, respectively. To ensure depth in their science core, students must take at least two four-credit courses within a single area other than mathematics. One-credit courses that are graded satisfactory/unsatisfactory do not satisfy science requirements. For more information, see a departmental adviser.

Electronic Arts Curriculum

The B.S. degree in Electronic Arts (EART) provides a foundation for students who aspire to careers as practicing artists in the Digital Age. Combining traditional studio and theory courses in the Fine Arts with Electronic Arts disciplines, the program familiarizes students with the full range of creative digital media and allows them to select areas of concentration in such fields as video, animation and visualization, computer music and sound design, game design, multimedia, installation, interactivity, performance art, and net-based art.

Situated within the context of a technological university, Rensselaer’s art program offers a unique creative environment in which to explore the relationship between the creative arts and emerging technologies.

Rensselaer’s location within a thriving community of technological innovation and proximity to art and cultural centers such as Williams College, Massachusetts Museum of Contemporary Art (MASS MoCA), Dia: Beacon, Bard College, and Bennington College further strengthens its arts programs.
Applicants must submit a portfolio and written statement of interest. In this statement, an applicant should address his or her specific interests in the program, desire to work with electronic media, and a description of work submitted in the portfolio. The successful portfolio should include 10 to 20 examples of an applicant’s best work in any medium, such as drawings, paintings, photographs, slides, CD-ROMS, DVDs, video and audio recordings, music scores, and digital images.

The EART curriculum is comprised of 64 credit hours of core courses. Once accepted into the program, an undergraduate electronic arts student can expect to follow a program of courses similar to the following.

<table>
<thead>
<tr>
<th>First Year Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTS-1010</td>
<td>Media Studio: Video/Audio</td>
<td>ARTS-1020</td>
<td>Media Studio/Imaging</td>
</tr>
<tr>
<td>ARTS-1200</td>
<td>Basic Drawing</td>
<td>MATH-1620</td>
<td>Contemporary Ideas in Math</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td>H&amp;SS Elective</td>
</tr>
<tr>
<td>ARTS-2220</td>
<td>Fundamentals of 2-D Design</td>
<td>ARTS-1400</td>
<td>Music Fundamentals</td>
</tr>
<tr>
<td>IHSS-196x</td>
<td>Humanities Elective/First Year Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH-1500</td>
<td>Calc. I for H&amp;SS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTS-2010</td>
<td>Intermediate Video</td>
<td>ARTS-2020</td>
<td>Computer Music</td>
</tr>
<tr>
<td>ARTS-2540</td>
<td>The Multimedia Century</td>
<td>ARTS-2030</td>
<td>Net Art</td>
</tr>
<tr>
<td>ARTS-2040</td>
<td>Intermediate Digital Imaging</td>
<td>BIOL-1010</td>
<td>Introduction to Biology</td>
</tr>
<tr>
<td>CSCI-1100</td>
<td>Computer Science I</td>
<td></td>
<td>Humanities Elective</td>
</tr>
<tr>
<td>(or CSCI-1010)</td>
<td>Intro. to Computer Programming</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Professional History/Theory Elective</td>
<td>ARTS-4710</td>
<td>Technical Production and Documentation</td>
</tr>
<tr>
<td></td>
<td>Professional Elective in Studio</td>
<td></td>
<td>Professional Elective in Studio</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Science Elective</td>
<td></td>
<td>Social Science Elective</td>
</tr>
<tr>
<td></td>
<td>Math/Science Elective</td>
<td></td>
<td>Math/Science Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTS-xxxx</td>
<td>Senior Capstone</td>
<td>ARTS-xxxx</td>
<td>Senior Capstone</td>
</tr>
<tr>
<td></td>
<td>Professional History/Theory Elective</td>
<td></td>
<td>Free Elective</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Science Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 These courses may be taken in any order.
2 These courses may be taken in reverse order.
3 BIOL-1010 Intro to Biology is not required if first major is Engineering.
Information Technology—Arts Curriculum

The Information Technology degree with a concentration in Arts presents an exciting program of study that emphasizes the creativity of studio arts in shaping and influencing information technology. The courses in this program are supported by the Integrated Electronic Arts at Rensselaer (iEAR) studios, an extensive state-of-the-art facility dedicated to interdisciplinary research and artistic development in interactivity, digital video, computer imaging, digital audio, animation, virtual reality, web design, multimedia installation, and performance art. A series of courses is designed to give students hands-on experience with a full range of arts practice within Rensselaer’s unique technological environment. Intermediate and advanced courses offer the opportunity to focus on a specialized research area and develop innovative collaborative projects. This study in the Arts concentration provides both the theoretical foundation and practical experience needed for the many fast-growing digital arts and media careers.

Electronic Media, Arts, and Communication (EMAC) Curriculum

This joint B.S. degree is earned from both the Department of the Arts and the Department of Language, Literature, and Communication. As such, it is interdisciplinary in nature and is therefore described in detail under the heading Interdisciplinary Programs and Research at the end of the Humanities and Social Sciences section of this catalog.

Minor Programs

Music

A music minor consists of 16 credits from the music curriculum. All music minors must take ARTS-2400 Music Theory I. The remaining credits may be filled by courses in music history, theory, jazz, computer music, world music, and performance ensembles. Up to eight ensemble credits may be applied toward the music minor.

Studio Arts

A studio arts minor consists of 16 credits from the studio arts curriculum, which includes courses in drawing, painting, and sculpture. All studio arts minors must take at least three studio courses, and at least one of these must be at the 4000 level. The remaining four credits may be filled by another studio course or an art history course.
Electronic Arts
An electronic arts minor consists of 16 credits from the electronic arts curriculum. Students may follow one of the two options listed below to complete the minor. For more information, see departmental adviser.

Option A
Two Media Studio courses (ARTS-1010 and ARTS-1020)
One 2000-level electronic arts studio course
One electronic arts history or theory course

Option B
One Media Studio course (ARTS-1010 or ARTS-1020)
One 2000-level electronic arts studio course
One 4000-level electronic arts studio course
One electronic arts history or theory course

Special Undergraduate Opportunities
Visiting Artists Series
The Department of the Arts supports the iEAR Presents! series which brings leading composers, performers, and media artists to campus for performances, exhibitions, lectures, and workshops. All students are encouraged to attend the rich variety of events both on campus and in the Troy area.

Ensembles
Many noncredit ensembles, dictated by student interest, are available on campus. Typical examples have included symphonic band, pep band, swing band, and vocal groups such as the Rensselyrics and the Rusty Pipes. The department offers one-credit ensembles that may be applied toward the music minor: Rensselaer Orchestra, Rensselaer Concert Choir, Jazz Ensemble, Percussion Ensemble, and Ghanaian Drumming Ensemble.

Graduate Programs
Master of Fine Arts in Electronic Arts
The M.F.A. program is designed for students pursuing artistic and academic careers emphasizing electronic media. Admission is highly competitive, and applicants must have completed a bachelor’s degree and display a high level of ability in any artistic medium. In addition to the standard transcripts, recommendations, and statement of background and goals, prospective students submit a portfolio of creative work. The primary consideration in the selection process is evidence of talent and commitment to personal development as a creative artist.

The M.F.A. degree requires 60 credit hours of coursework at Rensselaer, including up to nine credit hours of master’s thesis. Completion of the degree generally takes two years. Independent creative work done under a faculty mentor’s supervision is encouraged. The degree emphasizes developing creative skills in digital video, computer music, imaging, animation, interactive media, performance, and installation art. The student’s work at Rensselaer culminates in a required thesis project, submission of written thesis document, and a thesis defense. The thesis project is a major artistic effort and may include a full-length performance, installation, or exhibition.

All students are expected to develop competency in using various media available in the iEAR Studios as well as in the theoretical and critical issues relevant to their fields of interest. Since the program is geared towards preparing students to participate actively in the art and music communities, practical aspects of production and presentation of creative work are emphasized.
The M.F.A. Plan of Study consists of 60 credit hours beyond the bachelor’s degree, including:

- at least 30 credit hours in 6000-level courses
- three history or theory courses at the 4000 or 6000 level, one of which must be:
  - ARTS-6110 Electronic Arts Overview
- a demonstration of competency in interdisciplinary electronic arts
- four credits of artistic residency through Arts Practicum (ARTS-4050)
- enrollment in Electronic Arts Practice or Thesis every semester of residency
- one to nine credits of Master’s Thesis
- required public presentation and participation in critiques at the end of each semester

**Course Descriptions**

Courses related to all Arts curricula are described in the Course Descriptions section of this catalog under the department code ARTS.

**Cognitive Science**

**Chair:** Selmer Bringsjord  
**Director, Minds and Machines Program: Rensselaer’s Undergraduate Program in Cognitive Science:** Bram van Heuveln  
**Director, Graduate Program in Cognitive Science:** Wayne D. Gray  
**Director, Undergraduate Advising, Philosophy:** Michael J. Zenzen  
**Director, Undergraduate Advising, Psychology:** Brett R. Fajen  
**Department Home Page** [http://www.cogsci.rpi.edu](http://www.cogsci.rpi.edu)

Cognitive Science is broadly defined as the study of the mind/brain, how it is structured, how it functions, and how it can be represented and simulated. It is theoretically grounded in cognitive psychology, neuroscience, logic, and philosophy of knowledge and mind. Its practical applications include artificial intelligence, cognitive engineering and human factors, cognitive modeling, perception and action, and psychopharmacology.

---

1. Individual requirements can be waived, in exceptional circumstances, by the department without decreasing the total number of credits for the degree. It is also possible to reduce the total number of credits required by transferring up to six credits of previous graduate work or by waiving up to 12 credits for professional experience, up to six credits of which can be graduate transfer credit.

2. History/theory courses may be either four credits (4000-level courses) or 3 credits (6000-level courses).

3. Competency is demonstrated through two qualifying reviews. Each student will participate in two end-of-semester departmental critiques, which will be judged by the Electronic Arts Faculty. The first review will identify the technical and creative areas to be addressed in the second review. The faculty must agree that the student’s work shows competency and artistic merit in interdisciplinary media in order for the student to progress toward his or her final thesis by enrolling in Thesis supervision credits rather than Arts-6080.

4. All levels of Arts-6080 and Thesis supervision meet together in a weekly three hour seminar format, which is required of all students in residence. When enrolled for Thesis credits, students will also be expected to have regular individual meetings with their advisers. In their final two semesters of residency, students must enroll in a minimum of one thesis credit. The maximum number of thesis credits in which a student can enroll is nine.
At the graduate level, the department is committed to the concept of integrated cognitive systems. Specifically, research and teaching falls into areas that together cover low- to high-level cognition, whether in minds or machines:

- Reasoning (Human and Machine)
- Computational Cognitive Modeling
- Cognitive Engineering
- Perception and Action

Modern research facilities, including the CogWorks Laboratory, Interactive and Distance Education Assessment (IDEA) Laboratory, Rensselaer Artificial Intelligence and Reasoning Laboratory (RAIR Lab), Perception and Action Lab (PandA Lab), and dedicated space in the Institute’s new Social and Behavioral Research Laboratory, provide a new expression of the Department’s interests in cognitive science that integrates the diverse research activities of the faculty in the Department. At the graduate level, our goal is to prepare our doctoral graduates for careers as researchers in four related areas within cognitive science: computational cognitive modeling, reasoning and decision-making, perception and action, and cognitive engineering.

Our new Ph.D. in Cognitive Science was approved by the State of New York in 2003. For information and guidance about applying to this new Ph.D. program, please contact Betty Osganian, Student Services Administrator at the undergraduate and graduate levels at osgane@rpi.edu.

At the undergraduate level, the Department has maintained separate programs in philosophy and psychology leading to the Bachelor of Science degree in each discipline, respectively. An important goal of the undergraduate program, particularly for those enrolled in the Minds and Machines Program, the department’s undergraduate program in cognitive science, is to prepare students for careers in the rapidly growing “Information Economy.”

**Research Innovations and Initiatives**

Graduate training in Cognitive Science emphasizes research, modeling, and building of integrated cognitive systems. Within this broad scope the department has special strength in the following areas.

**Human and Machine Reasoning**

Foci include logic-based and knowledge-based AI, theorem-proving, and psychology of reasoning. The multi-disciplinary group of researchers involved is known as the Rensselaer Reasoning Group, which works out of the Rensselaer AI & Reasoning (RAIR) Lab. For information, contact Selmer Bringsjord via selmer@rpi.edu.

**Computational Cognitive Modeling**

Understanding an integrated cognitive system can be very complex. The possibilities for interaction among cognitive, perceptual, and action operations is astounding. The interplay of each of these with the other and with the external world cannot be simply predicted. Computational cognitive models provide a vehicle to manage this complexity with the goal of making progress towards understanding how integrated cognitive systems effect and are affected by their environment.
Cognitive Engineering
Cognitive Engineering is the application of cognitive science theories to human factors problems. Putting cognitive theories to the test of real-world applications is a means of maintaining a focus on the truly important cognitive issues. At Rensselaer, cognitive engineering has two components; (1) research directed at solving applied problems, and (2) research directed at developing engineering tools that others with less cognitive training can use to solve applied problems.

Perception and Action
This area of research focuses on perception with an emphasis on its role in the performance of both routine and skilled goal-directed action. Current research topics include visually guided locomotion in real and virtual environments, the coordination of eye and hand movements, and the integration of perception and action with higher-level cognition (e.g., learning and attention). At Rensselaer, these topics are investigated from various theoretical perspectives, including ecological psychology, dynamical systems theory, and computational cognitive modeling.

Faculty*

Professors
Baron, R.A.—Ph.D. (University of Iowa); industrial/organizational psychology, social psychology.
Bringsjord, S.—Ph.D. (Brown University); logic and artificial intelligence, foundations of artificial intelligence and cognitive science, computational creativity.
Gray, Wayne D.—Ph.D. (University of California at Berkeley); interactive behavior, computational cognitive modeling, cognitive science.
Koller, J.M.—Ph.D. (University of Hawaii); Asian and comparative thought, social philosophy, philosophy of religion.
Puka, W.J.—Ph.D. (Harvard University); ethics, cognitive-moral psychology, and applied cognitive science.
Rea, M.S.—Ph.D. (Ohio State University); visual psychophysics, lighting.
Reid, L.D.—Ph.D. (University of Utah); physiological psychology of reinforcement, drug and alcohol addiction.
Sun, Ron—Ph.D. (Brandeis University); computational cognitive modeling, cognitive architectures, skill learning, computational studies of consciousness, multi-agent interaction, connectionist and hybrid models.
Wallace, W.A.—Ph.D. (Rensselaer Polytechnic Institute); decision processes and cognition, decision support systems, improvisation, visualization and modeling.
Watt, J.—Ph.D. (University of Wisconsin-Madison); survey research via the internet; marketing communication; media and web cognitive processes; mathematical models of communication processes.
Zenzen, M.J., Jr.—Ph.D. (Rensselaer Polytechnic Institute); philosophy of science, philosophy of religion, aesthetics.

Associate Professors
Kalsher, M.J.—Ph.D. (Virginia Polytechnic Institute and State University); human factors, industrial/organizational psychology, applied experimental psychology.
Noble, R.G.—Ph.D. (University of California, Berkeley); psychobiology of choice and decision making.

* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2006 Board of Trustees meeting.
Assistant Professors
Cassimatis, Nicholas L. — Ph.D. (Massachusetts Institute of Technology); integrated cognitive models, human-level artificial intelligence, physical reasoning, natural language understanding.
Fajen, Brett R. — Ph.D. (University of Connecticut); visual perception, perception and action, ecological psychology, dynamical systems modeling; virtual reality.
Yang, Yingrui — Ph.D. (New York University); cognitive psychology, thinking, reasoning and decision-making, and cognitive science.

Research Assistant Professors
Schoelles, M. — Ph.D. (George Mason University); computational cognitive modeling, interactive behavior, natural language processing.

Clinical Associate Professor
Hubbell, C.L. — Ph.D. (University at Albany); behavioral neuroscience; psycho-pharmacology, learning.

Clinical Assistant Professors
Destefano, M. — M.S. (Rensselaer Polytechnic Institute); games design, psychology of play, system dynamics.
Fahey, J.T. — Ph.D. (University at Albany); philosophy of science, metaphysics, epistemology, philosophy of artificial intelligence.
Francis, Sonja — Ph.D. (University of Toronto); cognitive developmental aspects of children's graphic composition and college instructional strategies.
Traver, H. — Ph.D. (University at Albany); affirmative action, interactive learning, sexual harassment, industrial/organizational psychology.
von Heuveln, B. — Ph.D. (State University of New York at Binghamton); philosophy of mind, artificial intelligence, logic, computation, reasoning, and cognition.
VerWys, C. — Ph.D. (University at Albany); social psychology, forensic psychology.

Adjunct Faculty
Anderson, K. — Ph.D. (University of Georgia); counseling/clinical psychology.
Thero, D. — Ph.D. (University at Albany); history of ideas, ethics, environmental philosophy, philosophy of biology.
Van Orman, K. — M.A. (Kent State University); ABD (University at Albany); philosophy of science, philosophy of mind, philosophy of psychology, reasoning and cognition.

Undergraduate Programs

Baccalaureate Programs

Cognitive Science Program
The Cognitive Science Department’s undergraduate program is the Minds and Machines program. See the “Minds and Machines program” in the Interdisciplinary Programs and Research section of this catalog.

Philosophy Curriculum
Philosophy is a search for understanding and wisdom through inquiry into fundamental questions of existence and reflection on the underlying assumptions of knowledge and action. Through inquiry and reflection, humans seek to answer the “big” questions: What is the nature of human consciousness or of reality or of human experience? What is the meaning of life? Of what does the good life consist? How are right and wrong determined?
Agreeing with Socrates that “the unexamined life is not worth living,” the department encourages students to develop their own philosophical understanding, helping them to think critically and creatively about their own experience, values, and goals. This development of a coherent and critical personal perspective provides the foundation for a full and satisfying life, for the practice of responsible citizenship, and for leadership.

Whether working toward bachelor’s degree in philosophy alone or toward a dual degree, students must complete at least 32 credit hours of work in philosophy. Each student will develop a Plan of Study in consultation with a departmental adviser. In their senior year, all philosophy majors must write a thesis. Preparing this thesis will give students some research experience and early training in thesis writing in the event that they pursue further study. Students will write the thesis under the guidance of a professor of their choosing or selected based on familiarity with the research topic.

## Curriculum for B.S. Philosophy Degree (124 credits):

### First Year

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-1500 Calculus I (Arch/H&amp;SS)</td>
<td>MATH-1620 Contemporary Math Ideas in Soc.</td>
</tr>
<tr>
<td>or MATH-1010 Calculus I</td>
<td>or MATH-1020 Calculus II</td>
</tr>
<tr>
<td>Science Sequence Option I</td>
<td>Science Sequence Option I</td>
</tr>
<tr>
<td>IHSS-1964 First Year Studies</td>
<td>PHIL-1110 Introduction to Philosophy</td>
</tr>
<tr>
<td>BIOL-1010 Intro to Biology</td>
<td>Social Science Elective</td>
</tr>
</tbody>
</table>

### Second Year

<table>
<thead>
<tr>
<th>Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science or Math Elective</td>
<td>Philosophy Elective</td>
</tr>
<tr>
<td>PHIL-2140 Introduction to Logic</td>
<td>Social Sci. Elective (2000 level)</td>
</tr>
<tr>
<td>Humanities Elective (2000 level)</td>
<td>Free Elective</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
</tbody>
</table>

### Third Year

<table>
<thead>
<tr>
<th>Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philosophy Elective</td>
<td>Philosophy Elective</td>
</tr>
<tr>
<td>Philosophy Elective</td>
<td>Free Elective</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective</td>
<td>Hum. or Soc. Sci. Elective</td>
</tr>
<tr>
<td>[same code 2000 level]</td>
<td>[same code 4000 level]</td>
</tr>
</tbody>
</table>

### Fourth Year

<table>
<thead>
<tr>
<th>Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL-4990 Capstone Experience</td>
<td>Philosophy Elective</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
</tbody>
</table>

1. The science sequence may be selected, with the assistance of the student’s adviser, from among 1000-level introductory sequences in biology, chemistry, computer science, geology, or physics, including CSCI-1100, CSCI-1200, ERTH-1030, ERTH-1040. See the handout on the science core available from the School of Science.

2. BIOL-1010 is not required if first major is Engineering.
**Psychology Curriculum**

The field of psychology uses scientific methods and procedures to study all aspects of behavior and cognitive processes. Knowledge acquired about such topics as motivation, perception, learning, memory, personality, and social interaction is of major practical value in many settings (e.g., industry, education, health care).

Through the applied focus of many of its course offerings, the department provides a wide range of practical skills and knowledge that are useful in many different employment settings. At the same time, all undergraduate psychology students are equally well prepared for graduate work.

The department’s philosophy is to provide each student maximum flexibility in devising a specific plan of study. Psychology major requirements include the completion of five basic psychology courses (PSYC-1200 General Psychology, PSYC-2310 Experimental Methods and Statistics, PSYC-4370 Cognitive Psychology or PSYC-4410 Sensation and Perception, PSYC-4310 Advanced Experimental Methods and Statistics, and PSYC-4990 Undergraduate Thesis) and the completion of at least 12 additional credit hours within the department. The latter courses are electives and students will choose them in consultation with departmental advisers.

In addition, students must complete the basic degree requirements in physical, life, and mathematical sciences. Again, students will consult with their advisers in selecting specific courses to meet these requirements in accordance with their individual interests and goals.

As is evident in the typical four-year program outlined below, PSYC-1200 General Psychology is usually taken in the first year, PSYC-2310 Experimental Methods and Statistics in the second year, PSYC-4370 Cognitive Psychology or PSYC-4410 Sensation and Perception and PSYC-4310 Advanced Experimental Methods and Statistics in the third year and PSYC-4990 Undergraduate Thesis in the fourth year.

Due to the flexibility permitted in course selection, individual curricula may vary considerably within the framework of basic Institute degree requirements. Students are encouraged to supplement basic requirements in science and mathematics whenever feasible in order to take full advantage of Rensselaer’s education opportunities. A minimum of 124 credit hours is required to complete this curriculum.

**Curriculum for B.S. Psychology Degree (124 credits):**

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH-1500</td>
<td>Calculus I (Arch/H&amp;SS) ............4</td>
<td>MATH-1620</td>
<td>Contemporary Math Ideas in Soc. ....4</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td>MATH-1010</td>
<td>Calculus I</td>
<td></td>
<td>Calculus II</td>
</tr>
<tr>
<td></td>
<td>Science Sequence Option I (^1) ....4</td>
<td></td>
<td>Science Sequence Option II (^1) ....4</td>
</tr>
<tr>
<td>IHSS-1964</td>
<td>First Year Studies ....................4</td>
<td>PSYC-1200</td>
<td>General Psychology ....................4</td>
</tr>
<tr>
<td>BIOL-1010</td>
<td>Intro. to Biology(^2) ..................4</td>
<td></td>
<td>Social Science Elective ..................4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Year</td>
<td>Credit hours</td>
<td>Spring</td>
<td>Credit hours</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science or Math Elective ............4</td>
<td>PSYC-2310</td>
<td>Experimental Methods &amp; Stats .......4</td>
</tr>
<tr>
<td></td>
<td>Psychology Elective ..................4</td>
<td></td>
<td>Social Sci. Elective (2000 level) ....4</td>
</tr>
<tr>
<td></td>
<td>Humanities Elective (2000 level) ....4</td>
<td>Free Elective ........................4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Elective ........................4</td>
<td></td>
<td>Free Elective ........................4</td>
</tr>
</tbody>
</table>

\(^1\) The science sequence may be selected, with the assistance of the student’s adviser, from among 1000-level introductory sequences in biology, chemistry, computer science, geology, or physics, including CSCI-1100, CSCI-1200, ERTH-1030, ERTH-1040. See the handout on the science core available from the School of Science.

\(^2\) BIOL-1010 is not required if first major is Engineering.
Dual Majors

Dual majors are available in all three (cognitive science, philosophy, psychology) department curriculum areas. These options and their respective requirements are described below.

Cognitive Science

See the “Minds and Machines Program” in the Interdisciplinary Programs, and Research section.

Philosophy

Majors that may be combined with philosophy to form a dual major include computer science, physics, mathematics, biology, architecture, and various engineering majors (e.g., computer systems engineer). These dual programs serve the needs of those students desiring to combine the virtues of a liberal arts education with those of science, architecture, or engineering to achieve an education that is practical, stimulating, and diverse.

As an example of how such dual majors are structured, a student majoring in physics and philosophy would meet the requirements of the physics curriculum and take eight courses in philosophy. Among these would be PHIL-2130 Introduction to Philosophy of Science, PHIL-4360 Philosophical Problems of Space and Time, and PHIL-4310 Scientific Revolutions. A student majoring in computer science and philosophy would meet the requirements of the computer science curriculum and take eight philosophy courses including PHIL-2140 Introduction to Logic, PHIL-4260 Philosophy of Artificial Intelligence, and PHIL-4420 Computability and Logic. For a mathematics or computer science dual major, key courses in the philosophy major would be PHIL-4380 Philosophy of Mathematics, PHIL-4420 Computability and Logic, and PHIL-4720 Metaphysics.

Psychology

Dual majors with psychology may include computer science; electrical, computer, and systems engineering; and decision science and engineering systems. A dual major in management and psychology is also available. The Lally School of Management has established certain requirements that must be completed for this major in addition to those described above. For further information and a list of requirements for this dual major, see the Lally School of Management section of this catalog.
Minor Programs
The Department of Cognitive Science provides a variety of minor programs within its curricula. Each of these is described in detail below.

Philosophy
To complete the minor in philosophy, a student chooses a minimum of four philosophy courses, at least one of which must be at the 4000 level.

Philosophy of Science and Logic
This minor focuses on the underlying assumptions, conceptual structures, and implications of mathematical and scientific knowledge. To complete this minor, a student chooses a minimum of at least four philosophy courses, three of which must be from the following list:

- PHIL-2130 Introduction to Philosophy of Science
- PHIL-2140 Introduction to Logic
- PHIL-4260 Philosophy of Artificial Intelligence
- PHIL-4360 Philosophical Problems of Space and Time
- PHIL-4380 Philosophy of Mathematics
- PHIL-4420 Computability and Logic
- PHIL-4440 Theory of Knowledge
- PHIL-4720 Metaphysics

Philosophy of Human Values and Society
This minor emphasizes values in contemporary society. Human values in a technological society are explored through inquiries into the nature and function of art, morality, religion, and social institutions. To complete this minor, a student chooses a minimum of five philosophy courses, at least three of them from the following list:

- PHIL-2300 Asian Philosophies
- PHIL-2500 Bioethics
- PHIL-2830 Comparative Religion
- PHIL-4240 Ethics
- PHIL-4300 Environmental Philosophy
- PHIL-4520 Existentialism
- PHIL-4570 Buddhism

Psychology
To complete the minor in psychology, a student chooses a minimum of four psychology courses, with at least one at the 4000 level.

Brain and Behavior
This minor focuses on understanding how the structure, physiology, and chemistry of the brain shape human behavior and the practical implications of this understanding for medicine, psychology, and biotechnology. PSYC-1200 General Psychology is a prerequisite for this minor, and PSYC-4320 Behavioral Neuroscience is required for completion of the minor. The remaining two courses should be chosen from the following:

- PSYC-2940 Readings in Brain and Behavior
- PSYC-2960 Topics in Brain and Behavior
- PSYC-4110 Motivation and Performance
- PSYC-4410 Sensation and Perception
- PSYC-4450 Learning
- PSYC-4500 Drugs, Society, and Behavior
- PSYC-4940 Readings in Brain and Behavior
- PSYC-4960 Topics in Brain and Behavior
- PSYC-4600 Cognition and the Brain
- PSYC-4770 Psychopharmacology and Behavior
- Toxicology
- PSYC-4940 Readings in Brain and Behavior
- PSYC-4960 Topics in Brain and Behavior
Community and Health Psychology
This minor covers the applications of psychology in developing the understanding people need to exert a constructive control over their own behavior and their interactions in real-world social situations. PSYC-1200 General Psychology is a prerequisite, and PSYC-4720 Abnormal Psychology is a requirement for this minor. An additional two courses should be chosen from the following:

- PSYC-2730 Social Psychology
- PSYC-2940 Readings in Community and Health Psychology
- PSYC-2960 Topics in Community and Health Psychology
- PSYC-4110 Motivation and Performance
- PSYC-4340 Human Sexuality

General Psychology Minor
This customized minor is designed for students who want to take a set of psychology courses that do not satisfy the requirements of any of the other psychology minors. The courses must be chosen in consultation with an adviser and must share a common theme.

PSYC-1200 General Psychology (required)
The student must consult with an adviser before the third psychology course is selected to determine the remaining two courses. Four courses are required for this minor with at least one of the courses at the 4000 level.

Cognition
This minor is designed to focus on those aspects of psychology relevant to the field of cognitive science. PSYC-1200 General Psychology is a prerequisite for this minor, and PSYC-4370 Cognitive Psychology is required for completion of the minor. The remaining two courses should be chosen from the following:

- PSYC-2120 Introduction to Cognitive Science
- PSYC-2410 Introduction to Cognitive Engineering
- PSYC-4160 Human Factors Seminar
- PSYC-4180 Selected Topics in Engineering Psychology
- PSYC-2940 Readings in Human Factors
- PSYC-4940 Readings in Human Factors

Human Factors
This minor focuses on applying basic psychological principles to the interaction between person and machine. As technology becomes more sophisticated, it is critical to design equipment that optimally fits the needs and abilities of users. The prerequisite for this course is PSYC-1200 General Psychology and PSYC-2220 Human Factors in Design is required. The remaining two courses to complete the minor should be selected from the following:

- PSYC-4160 Human Factors Seminar
- PSYC-4180 Selected Topics in Engineering Psychology
- PSYC-2940 Readings in Human Factors
- PSYC-4940 Readings in Human Factors

- PSYC-4160 Human Factors Seminar
- PSYC-4180 Selected Topics in Engineering Psychology
- PSYC-2940 Readings in Human Factors
- PSYC-4940 Readings in Human Factors

Industrial/Organizational Psychology
This minor focuses on applying psychology to performance in the work place. It helps individuals develop the knowledge base needed to improve the performance of themselves and others in the work place. PSYC-1200 General Psychology is a prerequisite for this minor and PSYC-4200 Industrial/Organizational Psychology is a requirement. An additional two courses should be chosen from the following:
Social Psychology
This minor focuses on the personal and situational factors influencing social behavior. Individuals will develop techniques to enhance their social perception, decision-making, group influences on behavior and attitudes. PSYC-1200 General Psychology is a prerequisite for this minor and PSYC-2730 Social Psychology is a requirement. An additional two courses should be chosen from the following:

- PSYC-2600 Moral Development
- PSYC-2940 Readings in Social Psychology
- PSYC-2960 Topics in Social Psychology
- PSYC-4940 Readings in Social Psychology

Sport Psychology
This minor focuses on the psychological study of human behavior in sport and physical activity. Individuals will develop and refine their knowledge of the relationship between sport and a variety of traditional areas of psychology such as the principles of learning and behavior, motivation, social psychology, personality theory, and psychological assessment. This knowledge, in turn, may be applied to traditional issues in sport and physical activity such as effective coaching, enhancing athletic motivation, and exercise adherence. PSYC-1200 General Psychology is a prerequisite for this minor and PSYC-2800 Introduction to Sport Psychology is a requirement. PSYC-4961 Sport Psychology Seminar is recommended. An additional two courses should be chosen from the following:

- PSYC-2730 Social Psychology
- PSYC-2940 Readings in Sport Psychology
- PSYC-4110 Motivation and Performance
- PSYC-4960 Topics in Sport Psychology
- PSYC-4400 Personality
- PSYC-4410 Sensation and Perception
- PSYC-4450 Learning
- PSYC-4940 Readings in Sport Psychology

Graduate Programs

Master’s Programs
The Cognitive Science Department offers a Master of Science degree in Cognitive Science. The degree is open only to two groups of students. The first group is those who are already admitted to Rensselaer in a doctoral program. This includes students in the Cognitive Science doctoral program as well as students in other doctoral programs (e.g., Decision Sciences and Engineering Systems, Computer Science, and so on). Rensselaer doctoral students who desire a Master’s in Cognitive Science should contact the department directly. Other students able to obtain a Master of Science degree in Cognitive Science are those in our five-year program that combines the Bachelor of Science in Psychology or Philosophy with the Cognitive Science masters. See “Accelerated Programs” for more information.

Accelerated Programs
Qualified students, in consultation with an academic adviser, may design a five-year program to complete requirements for the Bachelor of Science in Psychology or Philosophy and the Master of Science in Cognitive Science. An additional 30 credit hours are required beyond the B.S. degree. Students must apply to the program prior to or early in the first semester of their junior year. This is a research-oriented,
Cognitive Science program that will emphasize one of the four areas (Human and Machine Reasoning, Computational Cognitive Modeling, Cognitive Engineering, or Perception and Action) that constitutes our approach to integrated cognitive systems. Prior to applying, we expect that students will have taken introductory courses in cognitive psychology, philosophy of mind, and cognitive science, as well as being involved in one of the several research laboratories sponsored by department faculty.

**Doctoral Program**
The new Ph.D. in Cognitive Science was approved by the State of New York in 2003. For information and guidance about applying to this new Ph.D. program, please contact Betty Osganian, Student Services Administrator at the undergraduate and graduate levels at osgane@rpi.edu or Paul Bauer, Director of Graduate Enrollment Programs, Enrollment Management, Admissions, at bauerp@rpi.edu.

**Course Descriptions**
Undergraduate courses in Philosophy or Psychology are described under the department codes PHIL and PSYC. Graduate courses in Cognitive Science are described in the Course Descriptions section under COGS.

**Economics**
**Chair:** Donald Siegel  
**Director, Ph.D. Program in Ecological Economics:** David Stern  
**Department Home Page:** [http://www.rpi.edu/dept/economics](http://www.rpi.edu/dept/economics)

The Nobel Prize in Economic Science recognizes the rigor and analytical content of economics. The private sector also values economic analysis, and economists are widely sought as potential employees by leading financial institutions and consulting firms. At Rensselaer, undergraduate students are introduced to the key ideas of economics that revolve around scarcity of resources and the function of social institutions. They learn to make choices among alternatives in which it often is not possible to achieve all desirable outcomes.

Through a sequence of progressively more advanced courses, students learn the concepts and tools of economics as applied to a variety of public policy issues such as: growth and technological change, resource scarcity and environmental pollution, unemployment, inflation, poverty, government spending and taxation, and regulation. Primary emphasis is on the analysis of how markets perform the central economic task of allocating scarce resources among competing ends. However, several courses such as public finance, government regulation, and cost-benefit analysis focus on public-sector allocative decision making. For engineers, scientists, and managers, career choices and options are often heavily intermixed with economic problems and policies.

The basic one-term course, ECON-1200 Introductory Economics, creates an awareness of the country’s economic problems and furnishes the basic tools with which, as voting citizens, students will reach independent, rational judgments on public policy questions.

The course provides a general introduction to economic principles and institutions. It is a self-contained course and is also a prerequisite for other courses listed. However, under certain circumstances, this prerequisite may be waived.

Prospective students should also be aware that the department administers the Edward J. Holstein Memorial Award for Excellence in Economics and the Shavell-Weinman Fund. Faculty Members are also encouraged to work with undergraduates on research projects.
Research Innovations and Initiatives

At the graduate level, the training objective is to allow students to apply the body of economics knowledge and techniques to a variety of issues in academic, government, and business settings. Department faculty and students focus their research in selected areas, including environmental and ecological economics, economics of technological change, productivity analysis, cost-benefit analysis, economic regulation, and international competitiveness.

Faculty*

Professors
Adams, J.—Ph.D. (University of Chicago); growth and technical change, labor, public economics.
Duchin, F.—Ph.D. (University of California, Berkeley); input-output analysis, structural economics, ecological economics, economic development, technological change.
Gowdy, J.M.—Ph.D. (West Virginia University); ecological economics, industrial organization and public regulation, regional economics.
Siegel, D.S.—Ph.D. (Columbia University); economics of technological change, productivity analysis, university technology transfer, corporate social responsibility.
Vitaliano, D.F.—Ph.D. (City University of New York); public finance, cost-benefit analysis, health economics.

Associate Professor
Stern, D.—Ph.D. (Boston University); natural resource economics, quantitative methods, ecological economics.

Assistant Professor
Simons, K.—Ph.D. (Carnegie Mellon University); industrial organization and technical change, dynamics of economic systems.

Clinical Associate Professor
Heim, J.—Ph.D. (University at Albany); money and banking, international economics.

Clinical Assistant Professor
Jones, R.—Ph.D. (Rensselaer Polytechnic Institute); money and banking, macroeconomics, introductory economics, econometrics.

Emeritus Faculty
Hohenberg, P.M.—Ph.D. (Massachusetts Institute of Technology); economic history, economics of technological change.

Undergraduate Programs

Rensselaer's undergraduate major in economics differs from other programs in three important respects. First, it requires that about one-fourth of the student's program be in mathematics and the natural sciences. Second, students must apply quantitative tools to real economic problems, notably in problem labs that employ regression, linear programming, and risk analysis. Finally, in addition to dedicated courses, students pursue various courses dealing with relevant aspects of environmental, ecological economics, and the economics of technological change.

* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2006 Board of Trustees meeting.
Baccalaureate Programs

A major in economics requires 34 credit hours and must include the following: ECON-1200 Introductory Economics, ECON-2010 Managerial Economics, ECON-2020 Intermediate Macroeconomics or ECON-4130 Money and Banking, ECON-4570 Introduction to Econometrics or ECON-4120 Quantitative Analysis, and ECON-4900 Seminar in Economics. An approved course in Statistics is a prerequisite to the Quantitative Analysis and Econometrics requirement.

Although specific courses will vary, the template below illustrates a typical bachelor of science curriculum within the Department of Economics. This curriculum requires a minimum of 124 credit hours.

### First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong></td>
<td></td>
</tr>
<tr>
<td>MATH-1500</td>
<td>Calculus I ¹</td>
</tr>
<tr>
<td>Science Option I ¹</td>
<td></td>
</tr>
<tr>
<td>First Year Studies</td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
<tr>
<td><strong>Spring</strong></td>
<td></td>
</tr>
<tr>
<td>MATH-1520</td>
<td>Math. Methods in Management and Economics</td>
</tr>
<tr>
<td>ECON-1200</td>
<td>Introductory Economics</td>
</tr>
<tr>
<td>Science Option II ¹</td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
</tbody>
</table>

### Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong></td>
<td></td>
</tr>
<tr>
<td>ECON-2010</td>
<td>Managerial Economics</td>
</tr>
<tr>
<td>Statistics Option</td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td><strong>Spring</strong></td>
<td></td>
</tr>
<tr>
<td>ECON-1200</td>
<td>Intermediate Macroeconomics</td>
</tr>
<tr>
<td>BIOL-1010</td>
<td>Introduction to Biology ³</td>
</tr>
<tr>
<td>Statistics Option or Elective</td>
<td></td>
</tr>
</tbody>
</table>

### Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong></td>
<td></td>
</tr>
<tr>
<td>ECON-4120</td>
<td>Quantitative Analysis</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td><strong>Spring</strong></td>
<td></td>
</tr>
<tr>
<td>ECON-4570</td>
<td>Econometrics</td>
</tr>
<tr>
<td>Economics Elective</td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
</tbody>
</table>

### Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong></td>
<td></td>
</tr>
<tr>
<td>Economics Elective</td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td><strong>Spring</strong></td>
<td></td>
</tr>
<tr>
<td>ECON-4900</td>
<td>Seminar in Economics</td>
</tr>
<tr>
<td>Economics Elective ³</td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Electives ³</td>
<td></td>
</tr>
</tbody>
</table>

### Concentrations

Work in the major field can easily be combined with meaningful concentrations of study in other fields of interest. Some possibilities include:

- Emphasizing liberal electives in, for example, a prelaw program or policy studies related to science and technology;
- Pursuing a minor concentration of 15 to 18 credit hours in a related professional field, such as environmental or transportation engineering, management, or computer science.

¹ Science options are CHEM-1100, CHEM-1200, PHYS-1100, PHYS-1200, ERTH-1030, ERTH-1040. Other sequences may be substituted with approval.

² These are special calculus courses for H&SS students, MATH-1010 and 1020 may be substituted.

³ As required.

⁴ BIOL-1010 is not required if first major is Engineering.
Dual Major Programs
Students are encouraged to consider a dual major as a means of enhancing their employment and graduate school prospects. Training in economics can provide an edge in either situation. A dual major is NOT a double degree, which requires 30 additional credits beyond the first degree. Dual majors may use their economics courses to fulfill the social science portion of the 24-credit H&SS Core. Otherwise the requirements are the same as for the single major in economics.

The department also offers two specially designed dual major options that uniquely combine economics with programs emphasizing science and technology and environmental issues. These include Ecological Economics, Values, and Policy and Environmental Studies, which, as programs that cross disciplines or even schools, are included in the School’s Interdisciplinary Programs and Research section found at the end of the H&SS portion of the catalog.

Minor Programs
At least 16 credit hours are required to complete an economics minor. These must include ECON-1200 Introductory Economics and ECON-2010 Managerial Economics. All courses must be taken for a grade to count towards the minor (or major). For further information on minors in economics, contact Donald Vitaliano, Sage 3405, vitald@rpi.edu, ext. 8093 or John Heim, Sage 3410, heimj@rpi.edu, ext. 8096.

Special Undergraduate Opportunities
Accelerated Programs
In consultation with an academic adviser, a student may design a five-year program to complete requirements for the Bachelor of Science in Economics and the Master of Science in Operations Research and Statistics or the Master of Business Administration. Participation in these programs may require admission to the Office of Graduate Education. They are designed to prepare the student for employment or for advanced graduate or professional training.

Graduate Programs
The Department of Economics offers a Master of Science degree aimed at developing skills in economic analysis and an interdisciplinary Ph.D. in Ecological Economics. These programs stress important applications in industry, government, and education.

Graduate level research projects cover a wide range of economic issues, including energy and environment; technological change and productivity measurement, cost-benefit analysis, health economics, international competitiveness, community sustainable development, the role of technology as an agent of change in the structure of national output in planned and market economies, global economic cooperation, cost-benefit analysis of state and local projects and policies, urbanization and industrial development; the economics of new technologies in nonprofit hospitals, technological change in input-output analysis, and innovation and international trade.

Master’s Programs
Though students must become competent in certain fundamental areas such as economic theory and econometrics, programs in economics are quite flexible and can readily accommodate those wishing to combine a graduate-level major in economics with a minor concentration in some related area. An economics minor can also be developed to complement a graduate program in another discipline.
Master of Science
Applicants for the M.S. in Economics program should have completed a bachelor’s program at an approved institution with basic undergraduate courses in economics and mathematics, including calculus. Some background in statistics is strongly recommended. Candidates must complete 30 credit hours of work selected in consultation with the program adviser, with a thesis option, and pass a comprehensive oral examination. There is no foreign language requirement.

Professional Masters Program in Ecological Economics, Values, and Policy
The Departments of Economics and Science and Technology Studies (STS) jointly offer this program, which builds on Rensselaer’s nationally recognized expertise and course offerings in the economic, political, social, cultural, and ethical implications and interactions of science, technology, environment, and society. EEVP targets early and mid-career professionals in state and local government, secondary education, business, and the nonprofit sector, for example, professionals in environmental NGOs (non-government organizations) who wish to upgrade their skills and advance their careers. Building on required courses in environmental, ecological, and natural resource economics and in environmental philosophy and policy, EEVP helps students acquire skills such as policy analysis and ecological valuation. These skills are necessary to address the complex multidisciplinary problems any society faces in such areas as environment and health, appropriate technology, and sustainable development. The 21st century promises a continuation of the march toward globalization. Dealing with prospects and problems of a world economy and the growing human impact on the natural world requires a broad and deep education. EEVP offers “hands-on” training that puts into practice the slogan “think globally, act locally.”

For more detailed information on the EEVP Master’s Program, see the Interdisciplinary Programs and Research section of this catalog.

Doctoral Program
The Economics Department offers an interdisciplinary Ph.D. degree in ecological economics that allows for individual research specialization and independent study in an atmosphere of close contact between faculty and students based on research participation.

The program combines traditional training in advanced economics, expected of Ph.D.s in economics, with the broader interdisciplinary perspective on economic, social, and environmental systems provided by ecological economics. Ecological economics is the transdisciplinary field that integrates diverse perspectives on human resource use, development, and the environment. In addition to traditional economic policy concerns regarding efficiency and equity, ecological economics focuses on sustainability. Research interests include: Analyzing scenarios for a sustainable economy; behavioral economics; corporate social responsibility; economic development and environment quality; global climate change; household consumption; life-cycle analysis; lifestyle change; measuring well-being and happiness; production theory; technological change, innovation, and technology transfer. The department has a strong empirical focus using techniques including econometrics, input-output analysis, time series analysis, and cost-benefit analysis.

The Ph.D. in economics requires at least 90 credits beyond the baccalaureate degree and 60 credits beyond an M.A. or M.S. in economics or a related field. For the post-Masters Ph.D., a minimum of 30 credits of course work or 10 three-credit courses must be taken. However, students can choose to take more courses and may be required to do so if their background so indicates. At least two-thirds of the total credit hours, excluding thesis, must be at the 6000 level, with the further limitation that no more than 21 credit hours of 4000 level courses are to be allowed. For example, if a student is taking 30 credits of course work in a post masters Ph.D., a maximum of 10 credits at the 4000 level is allowed. A maximum of 15 credits can be taken at institutions other than Rensselaer.
Students must complete a core course sequence in economic theory and quantitative methods and ecological economics. Students can receive waivers if they have previously completed a course with a substantially similar content and at a similarly advanced level.

The core economic theory and quantitative methods courses are: ECON-6550 Advanced Microeconomic Analysis, ECON-6590 Advanced Macroeconomic Analysis, and ECON-6570 Econometrics. The course ECON-6120 Advanced Quantitative Methods is recommended preparation for ECON-6570 and ECON-6210 Advanced Cost Benefit Analysis is recommended preparation for the comprehensive examination in microeconomics.

The ecological economics sequence requires students to take two of the following three courses: ECON-6230 Environmental Economics, ECON-6250 Ecological Economics, and ECON-6240 Natural Resource Economics.

To complete their coursework, students may choose other advanced courses offered by the economics department, other Rensselaer departments, and cross-registered colleges that are relevant to students’ interests.

Students are strongly encouraged to attend seminars conducted regularly in the economics department as well as in other Rensselaer departments.

An initial adviser will be assigned to each student. Immediately upon entering the economics Ph.D. program, students should draft a study plan. These plans must be kept current, as they will likely undergo periodic changes. The program director or co-director must approve the Plan of Study. The Plan of Study also indicates the student’s curriculum adviser and expected date of graduation.

Economics Ph.D. students must also pass written comprehensive exams that cover theory and application in the three required core fields of microeconomics, macroeconomics, and quantitative methods. The exams are commonly scheduled in late May with other dates scheduled as appropriate and necessary.

Upon successfully completing the qualifying exams, students organize a dissertation committee, which must be submitted to the graduate school for final approval. The committee must have at least four full-time tenure track Rensselaer faculty as members. At least one member of the committee must be from outside the economics department. If the committee has four members, then at least one member must be a member of another Department at Rensselaer. If the committee has five members, then one member of the committee can be from outside Rensselaer.

Students will prepare a dissertation proposal in consultation with their adviser that covers the theoretical and applied literature in the chosen field of study for the dissertation and outlines the planned dissertation research. The candidacy exam consists of an open presentation of the proposal. This constitutes an additional oral field exam in a chosen area of specialization. This exam is scheduled in consultation with the thesis adviser after all course work is completed and after the candidate has passed all required comprehensive exams. After passing the candidacy exam, a Ph.D. student is considered a candidate with only the dissertation and dissertation defense remaining to complete the requirements of the Ph.D. program.

**Course Descriptions**

Courses related to all economics curricula are described in the Course Descriptions section of this catalog under the department code ECON.
Language, Literature, and Communication

Chair: Cheryl Geisler

Department Home Page: http://www.llc.rpi.edu/

The Department of Language, Literature, and Communication (LL&C) is an internationally recognized center for interdisciplinary education, research, and theory development. The department's programs span areas including Human-Computer Interaction (HCI), composition and writing, computer-mediated communication (CMC), foreign languages, graphics and visual communication, literature and cultural studies, rhetoric, and technical communication.

The department offers a B.S. in Communication, including concentrations in Graphic Design and Web Design and Analysis (Web D&A); M.S. programs in Human-Computer Interaction (HCI), Technical Communication, and Communication and Rhetoric; and a Ph.D. in Communication and Rhetoric. Also offered in partnership with the Department of the Arts is a B.S. in Electronic Media, Arts, and Communication (EMAC). Through another partnership with the Faculty of Information Technology, LL&C offers a B.S. in Information Technology (IT) with Communication as a concentration. The M.S. program in Human-Computer Interaction is available through Rensselaer’s distance education program as well as on campus.

The B.S. programs prepare students for advanced study or for employment in fields related to graphic/communication design, communication technology and technical communication, multimedia design and production, and careers in the emerging Internet technologies. The M.S. degrees can lead to careers as information architects, Web designers, multimedia specialists, graphic designers, electronic communication specialists, technical communicators, usability engineers, and instructional interface designers. The M.S. programs also provide a foundation for doctoral study. Ph.D. graduates in Communication and Rhetoric find careers in business and government as well as in academia. The growing need for persons who understand the new communication technologies, and their impact on society and individuals, creates a demand for all LL&C program graduates.

Undergraduates may use some of their elective courses to complete a Certificate in Communication Design. Certificate programs in either Graphics or HCI are available to graduate students. Graphics or Communication Design can provide special competency in visual design and communication. The HCI certificate provides special competency in the design and analysis of computer-user interfaces. Either graduate certificate program can be incorporated into a standard M.S. program Plan of Study. The program in HCI is available via distance education and is an option in the M.S. in Management and Technology as well as in the M.S. in Technical Communication.

Research Innovations and Initiatives

In research, the department's mission is to develop and assess new understandings of how people create and manage their social and professional worlds through the mediation of symbol systems and communication technologies. The major thrusts of department research are described below.

Communication and Computers

Research in this area focuses on technologically mediated communication, design of human-computer interactions, information technologies in community development and networking, and technical and professional communication practices.
Rhetoric, Culture, and Communication Technology
Specific research projects in this area include cultural studies of film, photography, advertising, and cyberspace; rhetorical theory and analysis, with particular emphasis on digital, visual, and cultural rhetoric; and language in collaborative design work. Also underway is research in cultural rhetoric, which includes ethnographic studies of themed cultural environments.

Media Design and Theory
Design of hypermedia text and artwork, writing for print and digital media, visual communication and design, and the integration of visual with verbal codes are current areas of research in this category.

Research Facilities
To support these programs, LL&C maintains a variety of research-centered laboratories and facilities:

- Intel Laboratory-Students in LL&C and in the EMAC program have access to the Intel Lab in 4711 Sage Lab for both classes and individual work. The laboratory contains Pentium workstations with expanded memory and a variety of peripherals, all connected to the campus network via Ethernet. Large format printers, scanners, and digital cameras are also available. The laboratory also offers software packages from Adobe, Macromedia, and Microsoft. Additional software includes Cosmo Worlds, Extreme 3-D, SoftImage, QuarkXPress, RoboHelp, Chinese Word Processing, and a variety of browsers.

- Writing Center-This tutorial service available to all Rensselaer students offers help in all areas of writing such as lab reports, research projects, papers, proposals, reports, formal letters, and resumes. Students receive instruction from expert staff on a one-to-one basis. Attendance is voluntary, and no appointment is necessary. Students can also arrange more formal programs of writing improvement. Hours are posted at the center in 4702 Sage Lab. Additional information about the center’s resources (including on-line publications) can be accessed on its web site at http://www.rpi.edu/web/writingcenter/.

- Collaborative Classroom-Drawing on previous work in the Rensselaer Design Conference Room, the Collaborative Classroom, funded by the National Science Foundation and NYNEX and located in 2015 Troy Building, supports intellectual teamwork in the classroom. It provides teams of laptop users with the technological support required to generate, coordinate, and refine the joint action required in collaborative design. Furnished with technology-enhanced conference tables, the Collaborative Classroom provides across-the-table seating for seven teams of six students each.

- Social and Behavioral Research Laboratory (SBRL)-The SBRL contains space and equipment for applied and basic research in computer-mediated communication (CMC), human-computer interaction (HCI), psychology, cognitive science, community informatics, and technology studies. Faculty and graduate students from the Departments of Language, Literature, and Communication; Cognitive Science; Computer Science; Electronic Arts; Management; and Science and Technology Studies conduct multi-disciplinary studies in the social and behavioral impact of information technologies. The 8,500 square foot lab contains HCI and human factors research suites with eye tracking and observational video systems, focus group rooms with both direct and video observation and recording facilities, small CMC research rooms with computer and video systems, an immersive virtual reality studio, a computer-aided telephone and Web survey research lab, and a large-group research room.
Faculty*
Professors
Geisler, C.—Ph.D. (Carnegie-Mellon University); writing in workplace and professional contexts; the intersection of text, technology, and design; methods of the analysis of verbal data; genre theory; academic literacy.
Krull, R.—Ph.D. (University of Wisconsin-Madison); electronic user interfaces and performance support; embodied illustrations and language; usability research design.
Nadel, A.—Ph.D. (Rutgers University); literary theory and cultural narrative; American cultural studies; film and television studies; African-American studies; modern and contemporary American literature; creative writing.
Odell, C. L.—Ph.D. (University of Michigan); composition theory and research; integrating visual and verbal information; writing in nonacademic settings; writing in engineering; rethinking "literacy"; education reform.
Search, P.—M.A. (Goddard College); visual design theory and practice; interaction design and multimedia art; computer animation and hypermedia interface design; multi-literacy models for intercultural communication.
Watt, J.—Ph.D. (University of Wisconsin-Madison); survey research via the Internet; marketing communication; media and web cognitive processes; web communication technologies; HCI interfaces for the visually impaired; and mathematical models of communication processes. Current projects involve investigations of the active nature of web advertising audiences, asynchronous web-based videoconferencing systems, and evaluation of computer interfaces for the blind.
Whitburn, M.—Ph.D. (University of Iowa); history and teaching of technical communication; history of rhetoric; rhetoric bibliography; history of English studies.
Zappen, J. P.—Ph.D. (University of Missouri); digital rhetoric; activity theory; community networking; participatory-design processes.

Associate Professors
Bennett, A.—M.F.A. (Yale University); graphic design theory and research; meta-analysis of graphic design as a research discipline; cross-cultural and collaborative designing; design science.
Deery, J.—D.Phil. (Oxford University); media studies; television and new media; advertising and culture; popular culture; utopian literature; literature and science.
Esrock, E. J.—Ph.D. (New York University); cognitive/neuropsychological approaches to literature and visual art; theory of literature; theory and history of photography; modern literature; women writers.
Gordon, T.—Ph.D. (University of California-Berkeley); cultural anthropology; religion and globalization; evangelical media; ethnographic methods; sociolinguistics; themed environments; documentary film.
Haskins, E.—Ph.D. (University of Iowa); rhetorical theory and history, visual rhetoric, and rhetorical dimensions of public memory.
Isbister, K.—Ph.D. (Stanford University); social psychological and affective approaches to HCI, with special attention to games and other leisure and social technologies; embodied conversational agents and computer game characters.

*Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions including end-of-year promotions, please refer to the Faculty Roster Section of this catalog which is current of the May 2006 Board of Trustees meeting.
Clinical Associate Professors
Grice, R. — Ph.D. (Rensselaer Polytechnic Institute); information usability; human-computer interaction; communicating on the WWW; usability testing and evaluation; analysis of computer-games interfaces; effective teaching and learning in the virtual classroom; designing the total user experience.

Assistant Professors
Choi, J. — Ph.D. (State University at Buffalo); social uses of the Internet; online journalism; global telecommunication systems; digital media production and policies; intercultural communication; social network analysis.

Clinical Assistant Professors
Dubrawski, M. — M.A. (San Francisco State University); Japanese pedagogy; instructional technology; computer-assisted language learning.

Gerber, L. R. — Ph.D. (University at Albany); scientific French; electronic media; computer-mediated communication in France: the concurrent development of the Minitel and Internet in France and the Francophone countries.

Gutmann, J. — D.A. (University at Albany); creative writing (poetry and poetics, creative nonfiction); myth and literature; American Poetry; Asian philosophies and religions; first year college teaching praxis.

Lynch, M. — M.A. (University of Connecticut); human-computer interaction; analysis of computer game interfaces; design of AI within computer games in support of social interaction and communication; cognitive processes for modeling computer game AI; speech act theory.

Miyamoto, P. — M.F.A. (Otis Art Institute); visual design theory; publication design theory and practice; exploration of paint-based medium as an expressive art form.

Shen, T. — M.A. (Chinese Academy of Social Sciences); M.A. (University of Massachusetts-Amherst); Chinese linguistics, dialectology, phonology, and general linguistics.

Undergraduate Programs
LL&C undergraduate programs provide students with the multidisciplinary education essential for leadership in an information society. Rapidly transforming this society are new communication processes and technologies. Building on Rensselaer’s strong technological infrastructure, these programs offer hands-on education in the new communication technologies and theoretical frameworks to understand and shape the cultural impact of these technologies.

Bachelor of Science (Comm) Curriculum
The B.S. in Communication requires a total of 124 credit hours, including 44 credit hours of major requirements. Of the remaining credit hours, 32 are free electives, 24 meet Rensselaer requirements in the humanities and social sciences, and 24 are taken in math, science, and computing.
B.S. in General Communication

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHSS-1966 /COMM-1510 Introduction to</td>
<td></td>
<td>LITR-2110 Introduction to Literature</td>
<td></td>
</tr>
<tr>
<td>Communication Theory</td>
<td></td>
<td>COMM-2610 Introduction to Visual</td>
<td></td>
</tr>
<tr>
<td>WRIT-2110</td>
<td></td>
<td>COMM-2610 Communication</td>
<td></td>
</tr>
<tr>
<td>RHET-2110</td>
<td></td>
<td>COMM-2610 Hum. Elective/First-Year Studies</td>
<td></td>
</tr>
<tr>
<td>MATH-1500</td>
<td></td>
<td>MATH-1620 Contemp. Math Ideas in Society</td>
<td></td>
</tr>
<tr>
<td>IHSS-1969 /COMM-196x Communication and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Requirement 1</td>
<td></td>
<td>Major Requirement 1</td>
<td></td>
</tr>
<tr>
<td>Social Science Elective</td>
<td></td>
<td>Hum./SOC. Elective</td>
<td></td>
</tr>
<tr>
<td>BIOL-1010</td>
<td></td>
<td>Math/Science Elective</td>
<td></td>
</tr>
<tr>
<td>Introduction to Biology</td>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Requirement 1</td>
<td></td>
<td>Major Requirement 1</td>
<td></td>
</tr>
<tr>
<td>Hum./SOC. Elective</td>
<td></td>
<td>Social Science Elective</td>
<td></td>
</tr>
<tr>
<td>Math/Science Elective</td>
<td></td>
<td>Math/Science Elective</td>
<td></td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Requirement 1</td>
<td></td>
<td>Major Requirement 1</td>
<td></td>
</tr>
<tr>
<td>Hum./SOC. Elective</td>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
</tbody>
</table>

Web Design and Analysis Concentration

The Web Design and Analysis (Web D & A) concentration provides a curriculum for students who want to understand how communication principles affect the design and effectiveness of the World Wide Web and related systems. The concentration prepares students to provide leadership in designing, assessing, and shaping the World Wide Web and emerging Internet technologies. After completing this sequence, students will be able to conceptualize, construct, and critique WWW communications from an intellectual and practical perspective. This concentration also develops competencies in graphics, information architecture, media assessment, and technology applications such as e-business.

In consultation with their advisers, students in the Web Design and Analysis concentration choose 12 credit hours of LL&C electives. Students are especially encouraged to use these electives to take a set of related courses, such as graphics, communication design, or human-computer interaction. A four-credit hour Communication Internship focusing on Web design is also required.

1 Major Requirement (44 credit hours required) All Communication majors are required to take IHSS-196x or COMM-1510, COMM-2610, and IHSS-196x or COMM-196x (Comm. and Info. Tech.) Students who are following the General Communications major (i.e., those who are not following the Graphic Design or the Web Design and Analysis Concentrations) are also required to take LITR-2110 and WRIT-2110. The remaining 24 credit hours are comprised of courses taken from the Language, Literature, and Communication Department. Courses with the codes COMM, LANG, LITR, and WRIT fulfill the requirement.

2 BIOL-1010 is not required if first major is Engineering.
## B.S. in Communication (Concentration in Web Design and Analysis)

### First Year

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong> IHSS-196x/COMM-1510 Intro. to Communication Theory</td>
<td><strong>Spring</strong> LL&amp;C Elective 1 Intro. to Visual Communication</td>
</tr>
<tr>
<td><strong>Fall</strong> IHSS-196x/COMM-1610 Comm. and Info. Tech Hum. Elective/First Year Studies</td>
<td><strong>Spring</strong> COMM-1010 Intro. to Computer Programming</td>
</tr>
<tr>
<td><strong>Fall</strong> MATH-1500 Calculus I for H&amp;S</td>
<td><strong>Spring</strong> CSCI-1100 Computer Science 1</td>
</tr>
</tbody>
</table>

### Second Year

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong> Info. Architecture Requirement 2 Writing Requirement 1 H&amp;SS Core</td>
<td><strong>Spring</strong> Graphics Requirement (LL&amp;C) 4 Open Elective</td>
</tr>
<tr>
<td><strong>Fall</strong> CSCI-1100 Computer Science I</td>
<td><strong>Spring</strong> BIOL-1010 Introduction to Biology 9</td>
</tr>
<tr>
<td><strong>Fall</strong> CSCI-1200 Computer Science II</td>
<td><strong>Spring</strong></td>
</tr>
</tbody>
</table>

### Third Year

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong> Approaches to Assessment Requirement (LL&amp;C) 5 LL&amp;C Elective 1 H&amp;SS Core</td>
<td><strong>Spring</strong> Comm. Internship (focusing on Web Design) 6</td>
</tr>
<tr>
<td><strong>Fall</strong> Math/Science Core 8</td>
<td><strong>Spring</strong></td>
</tr>
</tbody>
</table>

### Fourth Year

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong> Applications Requirement 7 H&amp;SS Core</td>
<td><strong>Spring</strong> LL&amp;C Elective 1 Open Elective</td>
</tr>
<tr>
<td><strong>Fall</strong> Open Elective</td>
<td><strong>Spring</strong> Open Elective</td>
</tr>
</tbody>
</table>

1. Twelve additional credit hours in Language, Literature, and Communication Electives. Students are encouraged to take a set of related courses, such as graphics, communication design, or human-computer interaction.
2. Four credits, Information Architecture: COMM-4690, WRIT-4610.
3. Four credits, Writing Requirement. Students in the Web Design and Analysis Concentration will meet the writing requirement by taking one of the following courses: WRIT-2110, WRIT-1110, WRIT-2520.
5. Four credits, Approaches to Assessment. Students will satisfy this requirement by taking a course that emphasizes either empirical assessment or social/critical assessment.
   A) Empirical Assessment: COMM-4420, COMM-4590, COMM-4170 OR
6. Four credits, COMM-4300. Students must take a 4-credit hour communication internship focusing on a web design project. It is suggested that this requirement be fulfilled during the junior year.
7. Four credits, Applications Requirement: COMM-496x (Web Advertising).
8. Math/Science Requirement. Required courses in of math and science are: MATH-1500, MATH-1620, and CSCI-1100, then CSCI-1200, or CSCI-1010, then CSCI-1100, MATH-1010 and MATH-1020 may be substituted for MATH-1500 and MATH-1620, respectively. All students must fulfill the Institute requirement of 24 credit hours of Math/Science. One-credit courses that are graded satisfactory/unsatisfactory do not satisfy science requirements. Please see departmental adviser for more information.
9. BIOL-1010 is not required if first major is Engineering.
Graphic Design Concentration
The B.S. in Communication with a Concentration in Graphic Design: Theory, Research, Practice provides a curriculum for undergraduate students who seek professional careers in graphic design. This concentration will prepare students for professional practice and graduate study in creative problem solving for print and electronic media. Students completing this sequence will know how to apply theory to the creation of conventional and unconventional communication objects (that includes but is not limited to advertising campaigns, editorial layouts, corporate communications including annual reports and corporate standards, event announcements, advocacy campaigns, and web pages) that convey information to a target audience.

The B.S. in Communication with a Concentration in Graphic Design will require a total of 124 credit hours. It will consist of 64 credit hours of major requirements; 12 credit hours of free electives; and the Rensselaer requirements of 24 credit hours in the humanities and social sciences and 24 credit hours in math, science, and computing courses. The four-credit Communication Internship focusing on graphic design is also required.

B.S. in Communication with a Concentration in Graphic Design:
Theory, Research, Practice

First Year
Fall                  Credit hours       Spring                     Credit hours
H&SS Core in Art or Design* ..............4  COMM-4570  Typography .................................4
COMM-2610  Intro. to Visual Communication ......4  MATH-1620  Contemp. Math Ideas in Society ........4
COMM-1510/HSS-196x Intro. to Communication Theory ..............................................4  CSCI-1010  Intro. to Computer Programming*........4
MATH-1500  Calculus I for H&SS ....................4  CSCI-1100  Computer Science I

Second Year
Fall                  Credit hours       Spring                     Credit hours
Writing Requirement* ..........4  COMM-4690  H&SS Core in Art History* ..............4
COMM-4660  Visual Literacy ..........................4  COMM-4690  Interface Design: Hypermedia
COMM-4460  Visual Design ............................4  Theory and Application .......................4
Social Science Core* ............4  BIOL-1010  Intro. to Biology* ........................4

1 Students should choose four credits from the following set of courses: WRIT-2520 (two credits), WRIT-296x Creating Electronic Portfolios, WRIT-2310, WRIT-2410 (two credits), and WRIT-2510.
2 Students should choose two of the following courses: COMM-496x Media Design: Theory and Research, COMM-496x Visual Culture, COMM-496x Rhetoric of the Photograph, COMM-4580, COMM-4560, COMM-4780, LITR-496x Cultural Studies, LITR-2420, LITR-296x Postmodernism and Film, and/or a course in HCL. A comprehensive list of courses will be provided to the adviser each term.
3 Students may choose between CSCI-1010 or CSCI-1100. The latter is recommended for students who want to minor in Computer Science.
4 Students should choose two of the following courses: ARTS-2530 and ARTS-2540, or another course that the adviser approves.
5 A list of appropriate courses will be provided to the adviser each term.
6 BIOL-1010 is not required if first major is Engineering.
Electronic Media, Arts, and Communication (EMAC) Curriculum

This joint B.S. degree is earned from both the Department of Language, Literature, and Communication and the Department of the Arts. As such, it is interdisciplinary in nature and is therefore described in detail under the heading Interdisciplinary Programs and Research at the end of the Humanities and Social Sciences section of this catalog.

Information Technology and Communication (IT/Comm) Curriculum

The B.S. in IT/Communication is an information technology degree with a concentration which includes 32 credits taken in Language, Literature, and Communication (LL&C). This degree prepares students for leadership roles in careers such as communication specialists and corporate information officers. Beginning courses introduce students to the basics of communication theory, literacy theory, and written and visual communication. Students in IT/Comm should consider taking course work in one or more of the following LL&C pursuits: communication in new media, visual communication, and human-computer interaction.

---

**Third Year**

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Courses in Theory, Research</td>
<td>H&amp;SS Core in Art or Design</td>
</tr>
<tr>
<td>Math/Science Core</td>
<td>Math/Science Core</td>
</tr>
<tr>
<td>COMM-296x Color Theory</td>
<td>COMM-4650</td>
</tr>
<tr>
<td>COMM-496x Adv. Typography</td>
<td>Inter. Visual Communication</td>
</tr>
<tr>
<td>Writing Requirement</td>
<td>Social Science Core</td>
</tr>
</tbody>
</table>

**Fourth Year**

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>H&amp;SS Core in Art or Design</td>
<td>COMM-4300 Communication Internship</td>
</tr>
<tr>
<td>Information Design</td>
<td>COMM-496x Graphic Design for Corp. Identity</td>
</tr>
<tr>
<td>Publication Practicum</td>
<td>Elective</td>
</tr>
</tbody>
</table>

---

2 Students should choose one of the following courses: WRIT-1110, WRIT-2110, WRIT-4550, or WRIT-4120.

3 Students should choose two of the following courses: COMM-496x Media Design: Theory and Research, COMM-496x Visual Culture, COMM-496x Rhetoric of the Photograph, COMM-4580, COMM-4560, COMM-4780, LITR-496x Cultural Studies, LITR-2420, LITR-296x Postmodernism and Film, and/or a course in HCI. A comprehensive list of courses will be provided to the adviser each term.

4 A list of appropriate courses will be provided to the adviser each term.

5 Students should choose eight credits from the following set of courses: STSS-1510, STSS-1210; STSS-1110, or another course that the adviser approves. Four credits must be in a design-related course.
All LL&C undergraduate programs strive to accommodate students' differing academic and professional goals, while ensuring that they gain a depth of knowledge in one or more specific areas. Following are some sample programs of study:

### Information Technology and Communication (IT/COMM) Curriculum

#### First Year

**Fall**
- ITEC-1210 Information in History & Society......4
- CSCI-1100 Computer Science I...........4
- MATH-1010 Calculus I...........4
- COMM-1510/ IHSS-196X Intro. to Communication Theory........4

**Spring**
- ITEC-1220 Politics and Economics of IT ........4
- CSCI-1200 Computer Science II........4
- WRIT-2110 Rhetoric and Writing........4
- Math Elective1........4

#### Second Year

**Fall**
- One of: 1
  - ECSE-2610 Computer Comp. & Operations ......4
  - CSCI-2500 Computer Organization
  - ITEC-2110 Exploiting the Information World.....4
- ITEC-2960 Creativity and IT........4
- COMM-2610 Intro. to Visual Communication ......4

**Spring**
- One of: 1
  - ECSE-2660 Computer Arch., Networking & OS.4
  - CSCI-2300 Data Structures & Algorithms
  - ITEC-2210 Intro. to Human Computer
- ITEC-2210 Intro. to Human Computer
- LITR-2110 Introduction to Literature........4
- Free Elective........4

#### Third Year

**Fall**
- ITEC-4310 Managing IT Resources
- IT Elective (one of):
  - CSCI-4380 Database Systems .............4
  - MGMT-496x Data Resource Management
- Communication, Writing, or Language Elective ........4
- Life Science Elective (BIOL-xxxx) ........4

**Spring**
- Communication, Writing, or Language Elective ........4
- Probability and Statistics Elective (one of):
  - ENGR-2600 Modeling/Analysis of Uncertainty
  - MGMT-2100 Statistical Methods
  - PSYC-2310 Experimental Methods & Statistics
- H&SS Elective ........4
- Free Elective ........4

#### Fourth Year

**Fall**
- ITEC-4100 IT Capstone Experience ........4
- Communication, Writing, or Language Elective ........4
- Humanities Elective ........4
- Physical Science Elective (PHYS-xxxx)

**Spring**
- Communication Culminating Experience ........4
- Social Sciences Elective ........4
- H&SS Elective ........4
- Free Elective ........4

---

1 Select either the three-course ECSE sequence or the two-course CSCI sequence. If the ECSE sequence is chosen, ENGR-2350 will fill one free elective slot. Move COMM-2610 to a semester with a free elective. If the CSCI sequence is chosen, the math elective in the second semester of the first year must be MATH-2800.

NOTE: Students are expected to notify the instructor at the beginning of the Culminating Experience course that they are taking it for Culminating Experience credit, and they should confer with the instructor to define the course project.
Minor Programs
Students in all undergraduate degree level programs are strongly advised to develop a minor in a compatible field of interest. Participation in an internship or co-op is also recommended to allow students to gain professional work experience.

The Department of Language, Literature, and Communication offers a selection of minors for majors in other departments, all of which require at least 16 credit hours.

Communication
To complete this minor, students must take COMM-1510 Introduction to Communication Theory and one 4000-level Communication course. Two additional 4-credit communication courses under the codes COMM-xxxx or WRIT-xxxx are also required.

Literature
A literature minor must include LITR-2110 Introduction to Literature, plus three other 4-credit literature courses under the code LITR-xxxx.

French
This minor consists of French III, French IV, Business French I, and Business French II.

German
Required courses for this major include LANG-1320 German II, LANG-2310 German III, and two four-credit, 4000-level German courses. Students beginning the German sequence with German III must take three 4000-level German courses following German III. The appropriate department adviser may approve some course substitutions in order to meet individual student needs.

Graduate Programs
From founding the first graduate program in technical communication in the 1950s to receiving the Association of Computing Machinery Special Interest Group's Diana Award in 1999 for organizational leadership in producing quality documentation to the department's faculty receiving two national teaching awards in 2001, LL&C has been at the forefront of the field. Department faculty includes many active scholars who are winners of national awards for teaching and scholarship from technical communication professional associations. They are also members of the editorial and governing boards of these associations. In addition, department faculty members are unusually active in collaborating with corporations to improve processes both at industry work sites and in Rensselaer’s educational program.

Currently, the Department of Language, Literature, and Communication's graduate programs consist of three master’s level degree programs, a Ph.D. in Communication and Rhetoric, and two certificate programs. Specific details of these programs are outlined below.

Master’s Programs
Master of Science
LL&C offers the M.S. in Human-Computer Interaction (HCI), Technical Communication, and Communication and Rhetoric. The M.S. in Human-Computer Interaction integrates theory of computer usability and human communication theory with research and practice in designing and evaluating human-computer interactions. The curriculum combines coursework in human-computer interaction, technical communication, human factors, information design, and cognitive science to educate the designers of the future. Students gain a breadth of theory in these areas and applied work in design and software implementation. Differing from graduate programs in information technology and computer science, Rensselaer’s program in HCI emphasizes knowledge of computer usability research and interface design.
over implementation skills. Depending upon the specific course selections they make, graduates of this program will be prepared to work as information architects, usability engineers, interface designers, or Web designers. They will also be prepared to pursue a Ph.D. in HCI.

The Technical Communication master’s degree integrates work in research, design, and implementation. Graduates gain design skills that resist obsolescence and the capacity to generate content for several electronically based communication media. In addition to core technical communication courses, students are strongly urged to complete either the certificate in Human-Computer Interaction (HCI) or the certificate in Graphics. Whether producing Web pages, multimedia tutorials, electronic wizards, or online help systems, graduates of the M.S. in Technical Communication are prepared for sustained careers in industry.

The M.S. in Communication and Rhetoric emphasizes a research approach to communication problems and prepares students for applied research in industry or government, or for further study in a doctoral program. Both humanistic and social scientific perspectives are represented. This program accepts students from discourse-related fields such as English, communication arts, or journalism and students with research experience in the social sciences, physical sciences, or engineering.

The M.S. programs in Human-Computer Interaction (HCI), Technical Communication, and Communication and Rhetoric each require 30 credit hours for completion. Twenty-one of the 30 required credits towards the M.S. degree must come from courses offered by LL&C. Three to six credit hours may be devoted to a thesis. There is no foreign language requirement.

Doctoral Program

The mission of the Ph.D. in Communication and Rhetoric is to enable students to make a contribution with rigor, depth, and creativity on issues related to Communication in Technologically Mediated Contexts. LL&C’s Ph.D. in Communication and Rhetoric prepares students for careers in both academic and nonacademic settings. In recent years, most graduates of the program have become scholars and teachers; others have accepted government and industry positions that require skills in analyzing and designing human communication systems and practices. In either case, the Ph.D. program prepares students to explore the nature and impact of new communication technologies using insights from rhetoric and literacy studies, human-computer interaction (HCI), communication theory, game studies, and visual design.

The emergence of new forms of technologically mediated communication like the Internet, digital broadband, and wireless networks has led to the realization that the impact of these forms of communication is not fully explained by traditional theories of communication and rhetoric and can only be understood with new theoretical insights. The current challenge in theory and research in communication and rhetoric is to reconcile the canonical theory of the past with emerging theory that directly addresses the new technologically mediated communication environment. LL&C is uniquely positioned to develop new knowledge of this environment, as it combines the resources and cutting-edge research tradition of a premier technological university with a faculty strongly grounded in theory, methodology, and new media. LL&C is also able to draw upon its unique strengths to resituate rhetorical studies at the intersection of rhetoric, culture, and the new communication technologies, combining its traditional emphasis upon rhetorical theory and analysis and communication theory with newer emphases upon digital, visual, and cultural rhetoric, HCI, and visual design.

The Ph.D. curriculum provides students with a mix of core and methods courses, seminars, opportunities for directed research, and formal presentation requirements that provide an introduction to basic theory and research in communication and rhetoric and support and encourage projects that extend that theory and research into the future. To complete the Ph.D. in Communication and Rhetoric, students must
fulfill specific requirements in each of these areas. They must also complete a minimum of 90 credit hours beyond the bachelor's degree, or 60 credits beyond the master’s degree, including at least one course outside the department; pass a candidacy examination, including both written and oral portions; secure approval of a dissertation prospectus; and successfully research, write, and defend the dissertation. Details on these requirements are set forth in "A Guide to the Doctoral Program in Communication and Rhetoric," accessible through the department's Web site, http://www.llc.rpi.edu.

Special Graduate Opportunities

Graphics Certificate
The 12-credit graduate certificate is available as an option in our M.S. programs. The rapid advancement of computer graphics software for page layout, drawing, image editing, and interactive multimedia design presents communicators with a wide range of powerful design options. These technological developments create the need for communicators equally in command of words and visual imagery. The graphics program integrates design theory with in-depth studio work in design for print and electronic media including interactive multimedia design, Web design, and marketing and advertising design. In addition to graphics courses, students may pursue an internship or independent study (focused on graphics) as part of the concentration.

Certificate in Human-Computer Interaction
Computers are now embedded in devices ranging in size from space stations to fingernails, yet human brains must still understand their user interfaces. The Human-Computer Interaction (HCI) Certificate supplies the skills and knowledge students need to work in this new environment, which includes the Web, multimedia, wizards, agents, and still-developing technologies. The HCI certificate program consists of four three-credit courses related to the issues found in human-computer interactions: COMM-6740 Foundations of HCI Usability, COMM-6760 Electronic Coaching Systems, COMM-6750 Communication Design for the World Wide Web, and COMM-6810 Studio Design in HCI. This certificate is available to both on-campus and distance students as either a stand-alone certificate or as an option in both M.S. programs.

Cooperative Education
Participation in the Cooperative Education Program is encouraged as part of our departmental degree offerings. The intent of co-op is to provide a full-time, career-related work experience that will enhance students' knowledge and skills in their chosen professional field. Students who accept co-op assignments typically work from one to two terms (one of which must be an academic semester) prior to graduation. As a result, it is not uncommon for co-op participants to extend their graduation date.

Since graduate funding may be forfeited in any semester (not including summer) during which students are away from campus and unable to fulfill Teaching Assistant (T.A.) or Research Assistant (R.A.) duties, funded students should discuss their situation with their adviser and with the department's Graduate Programs Coordinator before accepting a co-op position.

Before accepting a co-op assignment, graduate students must have completed Writing and Editing (COMM-6110) or Proposing and Persuading (WRIT-6550) [Technical Communication or Communication and Rhetoric students] or Foundations of HCI Usability (COMM-6820) [HCI students], one (1) additional LL&C course (such as COMM-6530, Communication Research I), and have matriculated in the department as a graduate student for at least one semester.

Students may continue their education while on assignment by registering for Communication Studies (COMM-6940), or they may petition the department's M.S. or Ph.D. Policy Committees to take credits elsewhere. While working on co-op, students will also be registered for Co-op Industrial Assignment and will be considered full-time, regular students.
Please note that international students with an F1 visa must receive permission to work from the Cooperative Education and International Student Services offices to fulfill Immigration and Naturalization Service requirements.

**Course Descriptions**
Courses related to all LL&C curricula are described in the Course Descriptions section of this catalog under the department codes COMM, LANG, LITR, or WRIT.

**Science and Technology Studies**

**Chair:** Sharon Anderson-Gold  
**Undergraduate Adviser:** David Nichols  
**Director of Graduate Programs:** Steve Breyman  
**Director Professional EEVP Master’s Program:** Steve Breyman  
**Department Home Page:** [http://www.rpi.edu/dept/sts/](http://www.rpi.edu/dept/sts/)

The Department of Science and Technology Studies (STS) conducts interdisciplinary teaching and research on the social aspects of science and technology. The department also provides undergraduate instruction in anthropology, history, political science, and sociology. Department faculty members are drawn from these disciplines as well as from philosophy and psychology.

Wherever individuals work and live, they must understand the ways in which all aspects of society influence, and are influenced by, science and technology. Rather than holding a divided view of science and technology verses human values and society, STS recognizes both the human dimensions of science and technology, and the scientific and technological dimensions of human existence.

**Research and Innovation Initiatives**

The Science and Technology Studies Department at Rensselaer Polytechnic Institute is an interconnected network of scholars, activists, and students invested in studying science and technology from multiple perspectives. The strength of the department lies in its intellectual diversity. The department has faculty members trained in and students studying the traditional disciplines of anthropology, design, geography, history, philosophy, political science, sociology, and social psychology. Theoretical approaches encompass critical policy studies, cognitive sciences, cultural theory, ethics, linguistics/semiotics, political economy, simulation/ethnomathematics, and social theory. Objects of study range from the material to artificial worlds. Research within the department has focused on the environment, health, information technology, engineering, and design. The Science and Technology Studies Department is a place where faculty and students pursue studies of power, gender, race, colonialism, and the interactions between research and activism. This matrix of disciplines, theoretical approaches, objects of study, and topical issues inform the scholarship of the department and creates an open, productive, and collaborative intellectual location from which to engage in exploring the multifaceted relationships among science, technology, and human existence.
Faculty*

Professors

Anderson-Gold, S.—Ph.D. (New School for Social Research); ethics, social and political philosophy, history of philosophy.

Caporael, L.R.—Ph.D. (University of California, Santa Barbara); evolutionary theory; decision making, interpersonal dimensions of computing.

Hess, D.—Ph.D. (Cornell University); science, technology, and communities; nutrition and health.

Layne, L.—Ph.D. (Princeton University); medicine and culture, new reproductive technologies, popular images of nature, feminist methods.

Restivo, S.—Ph.D. (Michigan State University); sociology of science, sociological theory.

Winner, L.—Ph.D. (University of California, Berkeley); political theory, politics of technology.

Associate Professors

Breyman, S.—Ph.D. (University of California, Santa Barbara); political economy of environment, science, and society.

Eglash, R.—Ph.D. (University of California, Santa Cruz); African studies, anthropology, black history, cybernetics and virtual communities, math and science education.

Fortun, K.—Ph.D. (Rice University); international politics, environmentalism, and the law.

Fortun, M.—Ph.D. (Harvard University); historical and ethnographic studies of genomics, biotechnology of life sciences, critical scientific literacy.

Fouche, R.—Ph.D. (Cornell University); history of American technology, theories of race and racism, African-American studies, invention, design, and intellectual property.

Woodhouse, E.J.—Ph.D. (Yale University); policy of science and technology, decision making.

Assistant Professors

Akera, A.—Ph.D. (University of Pennsylvania); history of scientific and technical computing, innovation studies.

Campbell, N.—Ph.D. (University of California, Santa Cruz); drugs and pharmaceutical policy, women and health, women’s studies.

Vostral, S.—Ph.D. (Washington University); U.S. history, women’s studies, reproductive products.

Clinical Assistant Professor

Boyer, K.—Ph.D. (McGill University); urban design; information technology; gender and work.

Adjunct Assistant Professors

Everett, M.—Ph.D. (Erasmus University); sustainable livelihoods and sustainable development.

Theroux, P.—Ph.D. (Columbia University); sociology and education.

*Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2006 Board of Trustees meeting.
Undergraduate Programs

The Department of Science and Technology Studies initiated a bachelor of science degree program in the 1985–86 academic year. Rensselaer is a leader among the many American colleges and universities that grant degrees in the field. The STS degree program—Science, Technology, and Society (STS)—is a liberal arts program that prepares students for life and work in a technoscience-based society. Many STS majors choose a dual major in management, science, or engineering. Some graduates will attend professional schools to study corporate or patent law, medicine, policy analysis, or the management of science and technology. Others will use the program to obtain broad exposure in the social sciences and humanities prior to committing to a single discipline for the M.S. or Ph.D. Those entering the job market directly following graduation will find a growing need in consulting firms, major corporations, and government agencies for their unique combination of technical competence and conceptual, writing, and speaking abilities. The Rensselaer STS graduate, therefore, has a distinct advantage over other liberal arts graduates.

Baccalaureate Program

The STS bachelor’s program of study requires 124 credit hours, including the standard Rensselaer 24-credit hour humanities and social sciences requirement and 24-credit hour science, math, and computing requirement. At least 32 credit hours are required within the student’s major. These must be accompanied by 16 credit hours in a technical area (the technical option) relevant to this STS major.

The 32 credit hours usually include the following: STSH/STSS-1110 Introduction to STS, two of the 2000-level STS concentration options courses, a methods/statistics option, two of the 4000-level STS advanced options, a public service internship, and a senior project or thesis. The department chair or undergraduate adviser may allow substitutions.

Students must also satisfy the humanities and social science core program, which can be achieved through STSH courses for humanities credit and STSS courses for social sciences credit. Some STS courses are offered with the IHSS code in the first year studies program; all courses with an IHSS code may be counted for either humanities or social sciences credit.

Built into the program are several important elements. Among these is a part-time internship in a government agency or other setting where social issues in science and technology are discussed. Additional elements include skills training in computing, statistics, and research methods; strong development of speaking and writing skills; and opportunities to serve as faculty research assistants.

In cooperation with a faculty adviser, each student tailors a program of study to his or her interests. So, for example, a student interested in environmental issues can combine technical courses in environmental engineering and/or science with STS Advanced Option courses in Environment and Society (see list below). These can also be accompanied by other courses in humanities and social sciences such as ECON-4230 Environmental Economics. An internship with a New York state environmental agency and a senior project on regulation of acid rain or hazardous waste are additional possibilities for environmentally geared students.

Although specific courses will vary based on such individual interests, the template below provides a sample STS curriculum.
**Undergraduate Curriculum**

**First Year**

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-1500</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>STSS-1110</td>
<td>Introduction to STS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-1520</td>
<td>Mathematical Methods in Mgmt. and Econo. 1</td>
</tr>
<tr>
<td>STS Conc. Options</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI-1100</td>
<td>Computer Science I</td>
</tr>
<tr>
<td>STS Conc. Options</td>
<td>4</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-1010</td>
<td>Intro to Biology 3</td>
</tr>
<tr>
<td>STS Methods/Stats. Option</td>
<td>4</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSS-4800</td>
<td>STS Technical Option</td>
</tr>
<tr>
<td>Pub. Serv. Internship</td>
<td>4</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS Technical Option</td>
<td>4</td>
</tr>
<tr>
<td>Advanced STS Option</td>
<td>4</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS Technical Option</td>
<td>4</td>
</tr>
<tr>
<td>Advanced STS Option</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSS-4980</td>
<td>STS Technical Option</td>
</tr>
<tr>
<td>STS Senior Project</td>
<td>4</td>
</tr>
<tr>
<td>STS Technical Option</td>
<td>4</td>
</tr>
</tbody>
</table>

**Concentrations**

STS offers several concentration “options,” each of which is described below.

**STS Concentration options**

These are two survey courses, selected with student adviser assistance from among the following five courses, each of which represents one of the concentrations in science and technology. In addition, STSS-2500 Historical and Cultural Perspectives on Science and Technology may be included. STSS-2960 Century of the Gene* may be taken instead of STSS-2100 Medicine and Society and STSH-2960 Design, Culture, and Society* may be taken instead of STSS-2200 Engineering, Design and Society.

STSS-2100 Medicine and Society: Perspectives on Science and Technology

STSS-2200 Engineering, Design, and Society: Perspectives on Science and Technology

STSS-2300 Environment and Society: Perspectives on Science and Technology

STSS-2400 Law, Values, and Public Policy: Perspectives on Science and Technology

STSS-2550 Information, Society, and Culture: Perspectives on Science and Technology

---

1 Other mathematics options may be selected with the permission of the student's adviser.

2 The science sequence may be selected, with the assistance of the student’s adviser, from among 1000-level introductory sequences in biology, chemistry, geology, or physics, including ERTH-1030, ERTH-1040. See the handout on the science core available from the School of Science. The science or mathematics elective that completes the core requirement in physical, life, and engineering sciences should be chosen, with the assistance of the student’s adviser, to prepare for STS Technical Options and/or other electives.

3 BIOL-1010 is not required if first major is Engineering.

* A special topics course.
**STS Methods/Statistics Option** is one course, selected with the assistance of the student’s adviser, in either (1) research methods, (such as STSS-4130 Decision Making), a third course from among the STS Concentration Options listed above, or under special circumstances, a graduate-level research methods seminar; or (2) statistical methods, such as ENGR-2600 Modeling and Analysis of Uncertainty, ECON-4120 Quantitative Analysis, PSYC-2310 Experimental Methods and Statistics, or DSES-2010 Statistics for Management.

**Advanced STS options**
These are two related courses selected with adviser assistance from one of the following five lists, each of which represents one of the concentrations on science and technology.

**Biology, Medicine, and Society: Perspectives on Science and Technology**
- STSH-4960 Biofutures*
- STSS-4260 Sociology of Medicine
- STSS-4530 Body: Self, Symbol, and Politics
- STSS-4620 History of Medicine
- STSS-4920 Topics in Science, Technology, and Society
- STSS-4960 Human Evolution

**Environment and Society: Perspectives on Science and Technology**
- STSS-4300 Environmental Philosophy
- STSS-4320 Environmental Politics and Policy
- STSS-4390 Environment and International Policy
- STSS-4400 Risky Technologies
- STSS-4500 Environment and Development
- STSS-4540 Environment, Law, and Culture
- STSS-4920 Topics in Science, Technology, and Society

**Law, Values, and Public Policy: Perspectives on Science and Technology**
- STSH-4170 Ethical Issues in Computing
- STSH-4230 Engineering Ethics
- STSH-4740 Philosophy of Law
- STSH-4920 Topics in Science, Technology, and Society
- STSS-4110 Social Effects of Science and Technology
- STSS-4130 Decision Making
- STSS-4140 Inequality in America
- STSS-4270 Social Relations of Science
- STSS-4310 Politics of Science and Technology
- STSS-4350 Politics of Design
- STSS-4360 Contemporary Political Thought
- STSS-4390 Environment and International Policy
- STSS-4400 Risky Technologies
- STSS-4540 Environment, Law, and Culture
- STSS-4920 Topics in Science, Technology, and Society

**Engineering, Design, and Society: Perspectives on Science and Technology**
- STSH-4170 Ethical Issues in Computing
- STSH-4230 Engineering Ethics
- STSH-4920 Topics in Science, Technology, and Society
- STSS-4110 Social Effects of Science and Technology
- STSS-4250 Human Dimensions of Biomedical Technologies
- STSS-4270 Social Relations of Science
- STSS-4310 Politics of Science and Technology
- STSS-4350 Politics of Design
- STSS-4400 Risky Technologies
- STSS-4560 Gender, Science, and Technology
- STSS-4650 History of American Technology
- STSS-4660 History of American Science
- STSS-4920 Topics in Science, Technology, and Society
- STSS-4960 History of Information Technology*

**Information and Society: Perspectives on Science and Technology**
- STSH-4170 Ethical Issues in Computing
- STSH-4670 History of Information Technology
- STSS-4130 Decision-Making
- STSS-4310 Politics of Science and Technology
- STSS-4350 Politics of Design
- STSS-4650 History of American Technology
- STSS-4660 History of American Science
- STSS-4960 Mind, Self, and Culture*
- STSS-4960 Information Technology: Social, Legal, and Policy Issues*
- STSS-4960 AI, Robotics, and Society*

* This is a special topics course
**STS Technical options**
These four related courses are selected with student adviser assistance from among the course offerings of the Schools of Architecture, Engineering, Management, or Science (and Electronic Arts for dual majors). Students are encouraged to earn a minor or a second major through these courses or in combination with other electives. Minors can be earned, for example, in biology, computer science, environmental engineering, or science and management. The STS adviser may approve a proposal for a technical option in the School of Humanities and Social Sciences.

**Dual Major Programs**
Many STS majors choose to fulfill the requirements for a second major. For example, a pre-med student pursuing the biology, medicine, and society track within the STS major may pursue a dual major with biology, or an STS major pursuing the information and society track may pursue a dual major with computer science or information technology. There are also dozens of other dual major possibilities. There are also interdisciplinary dual major programs that have been specially developed for STS majors. These include Product Design and Innovation and Ecological Economics, Values, and Policy. For more information on these options, consult the Interdisciplinary Programs and Research section at the end of this Humanities and Social Sciences portion of the catalog.

**Minor Programs**
The STS department offers five minors, all of which are explained below. These minors generally consist of four related courses in a specialized area of study. At least two of these courses must be at the 4000-level. No Pass/Fail courses may be applied to the minor, and only one transfer or AP course may count for four to six credits. For further information on forming a minor, see the departmental adviser.

In addition to minors administered solely by the STS department, there are some interdisciplinary minor options. These include the interdepartmental minors Ecological Economics, Values, and Policy (EEVP) and Gender, Science, and Technology, and the Interschool Minor in Energy. While the EEVP minor program is outlined below, the latter program is detailed at the end of this departmental section under the heading Interdisciplinary Programs and Research.

STS department administered minors are as follows:

**Science, Technology, and Society**
All STS courses, including the first-year IHSS-1963 Science, Technology and Society*, may count toward the minor in STS, provided that the restrictions described for all department minors described above are met.

**Anthropology**
Anthropology is the study of the origins, development, and cultures of the human species. Cultural anthropology studies the full range of human societies—from tribal to complex modern societies. These studies are approached from a cultural perspective involving a community’s body of shared knowledge and understanding about the world. The anthropological perspective is multidisciplinary, comparative, holistic, and historical evolutionary.

Anthropology courses are listed under the course code STSS in the Course Descriptions section of this catalog. The following courses are those that the undergraduate director has approved for credit toward the anthropology minor.

*A special topics course.*
History

Today’s events and circumstances are a consequence of past situations and developments. As a result, understanding the present—as distinct from simply experiencing it—requires attention to history. The disciplined study of the past through written records and artifacts, as well as descriptions of witnesses, commentators, and critics, has long been part of the intellectual foundation of an educated person. History unfolds in ways that sometimes confound the expectations of both logic and predictive science, demonstrating the depth and complexity of human affairs. Thus, historical study provides valuable insight otherwise lacking in a curriculum of specialized, present-oriented branches of science and engineering. Simultaneously, historical cases present valuable evidence for social scientists or managers seeking the regularities of human events. Well-trained professionals ignore such resources at their peril.

History courses are listed in the STSH and STSS sections in the Course Descriptions section of this catalog. The following courses or those approved by the undergraduate director count toward the history minor.

- STSH-2670 History of 19th Century Europe
- STSH-296x/STSS-2960 War Since Napoleon*
- STSS-2630 Foundations of American History
- STSS-2680 History of Contemporary Europe
- STSS-2740 World War II

Political Science

Political science is the investigation of how people govern themselves. This investigation encompasses both normative and empirical dimensions, i.e., the goals and purposes of politics as well as the political behavior of people as individuals and in groups. Emphasizing public policy integrates the normative and empirical aspects of political science. Social and economic questions, which always have moral and ethical dimensions, are framed as policy questions and addressed in policy decisions within the political process. Many of the department’s political science courses deal explicitly with facets of science and technology policy. The political science curriculum thus provides an excellent adjunct to professional training in science and engineering.

Political science courses are listed under STSS in the Course Descriptions section of this catalog. The following courses or those approved by the undergraduate director count toward the political science minor.

- STSS-1310 Principles and Practices of American Government
- STSS-1330 International Relations
- STSS-2400 Law, Values, Public Policy
- STSS-4130 Politics of Science and Technology
- STSS-4230 Environmental Politics and Policy
- STSS-4330 World Politics
- STSS-4350 Politics of Design

- STSS-4360 Contemporary Political Thought
- STSS-4400 Risky Technologies
- STSS-4500 Environment and Development
- STSS-4800 Public Service/Professional Careers Internships

- STSS-2940/4940 Readings in Political Science
- STSS-2960/4960 Topics in Political Science
**Sociology**

Sociology is the study of human interactions and social groups. It concentrates on the aspects and trends of social life that are common to all cultures: social institutions, social problems, social movements, population problems, science, medicine, and social change. The sociologist studies all aspects of social behavior—in couples; families; laboratories and operating rooms; religious, professional, and political organizations; assembly lines; and national and international contexts. This information adds a perspective for understanding human ethical problems, developing policy alternatives, and mitigating emerging social problems.

Sociology courses are listed under STSS in the Course Descriptions section of this catalog. The following course or those approved by the undergraduate director count toward the sociology minor.

- STSS-1210 Sociology
- STSS-2100 Medicine and Society
- STSS-4110 Social Effects of Science and Technology
- STSS-4140 Inequality in America
- STSS-4200 China: Past and Present

**Ecological Economics, Values, and Policy**

The EEVP minor combines the best of both the Economics and STS departments—incisive economic analysis and broad humanities and social science analysis that emphasize the roles science and technology play in today's global political-economy and culture. Given the strong interdisciplinary background acquired in EEVP, graduates can play a leading role in resolving the critical environmental and social problems of the 21st century. The United Nations reports that the demand for EEVP-type program graduates exceeds the supply. According to the UN, it is crucial that we educate people who understand that “sustainable development does not merely deal with the conservation of nature or the management of ecosystems, but more broadly and fundamentally aims at new models of societal development and social transformations.”

EEVP courses are listed under ECON, STSH, and STSS in the Course Descriptions section of this catalog. The following courses or those approved by the undergraduate director count toward the EEVP minor.

**Required:**
- ECON-2010 Managerial Economics
- STSS-2300 Environment and Society

**Choice of one of the following:**
- ECON-4230 Environmental Economics
- ECON-4240 Natural Resource Economics
- ECON-4250 Ecological Economics
- ECON-4960 Topics in Economics*

**Choice of one of the following:**
- STSS-4300 Environmental Philosophy
- STSS-4540 Environment, Law, and Culture
- STSS-4320 Environmental Politics and Policy
- STSS-4500 Environment and Development
- STSS-4390 Environment and International Policy
- STSS/STSH-4920, 4960 Topics in Science, Technology, and Society/STS*

* A special topics course.
Gender, Science, and Technology
This gender studies minor focuses on the ways that gender influences and is influenced by science and technology. Requirements include a total of at least 16 credit hours, eight of which must be at the 4000 level. In addition, all students must take one of the 1000-level courses and the course STSS-4560 Gender Science and Technology.

1000 Level (must take at least one):
IHSS-1960 Art, Technology, and Society **
IHSS-1960/STSH-1110/STSS-1110 Introduction to Science and Technology Studies **

2000 Level:
ARTS-2100 Television and Culture
COMM-2800 Interpersonal Communication
LITR-2770 Women Writers
PHIL-2500 Bioethics
PHIL-2600 Moral Development

4000 Level
ARTS-6960 Electronic Arts Theory: Contemporary Art and Culture *
COMM-4640 Language and Power
COMM-4960 Advertising and Culture *
PHIL-4300 Feminist Theory *
PHIL-4750 Cognition and Education

STSH-2720 Masculine/Feminine
STSH-2960 Psychology, Culture, and Design **
STSS-2100 Medicine and Society
STSS-2500 Historical and Cultural Perspectives on Science and Technology
STSH-4300 Environmental Philosophy
STSH-4960 Feminist Theory *
STSS-4530 Body: Self, Symbol, and Politics
STSS-4560 Gender, Science, and Technology (required)

Students may cross-register for up to two courses in the Women’s Studies Program at Russell Sage College. Contact Linda Layne, program coordinator, at laynel@rpi.edu for more information.

Interschool Minor in Energy
Any thoughtful discussion of the challenges faced in the 21st century will refer to energy. Rensselaer is uniquely able to offer students in any undergraduate major an opportunity to learn about the wide variety of issues involved in understanding energy. The interschool minor in energy includes fundamental courses in architecture, engineering, management, science, and the humanities and social sciences. Any student wishing to develop a multidisciplinary background in energy should consider this minor.

The minor requires a minimum of four courses. Three of these courses, ENGR-1200 Engineering Graphics and CAD, MANE-4960 Topics in Mechanical Engineering, Aeronautical Engineering, Nuclear Engineering, or Engineering Physics, and ERTH-4400 Energy and Mineral Resources, are required.

If any of the above courses are also required for a student’s major, the student should substitute an additional course from Option Two below. At least one more course must also be taken from Option One.

---

* With approval of EEVP Minor Adviser, Professor Steve Breyman, ext. 8515, Sage 5207, or breyms@rpi.edu

** These IHSS-1960 courses are in the First Year Studies Program
Special Undergraduate Opportunities

Accelerated STS-Law Program
In cooperation with Albany Law School and Columbia University Law School, Rensselaer offers a unique program leading to the B.S. and Juris Doctor (J.D.) in six years rather than the usual seven. Admission to this program is restricted. For Albany Law School, most students are admitted as incoming first-year students. Selected applicants must meet the admission requirements of Albany Law School of Union University. Thus a prospective STS-law student may be able to assure admission to law school prior to beginning an undergraduate career at Rensselaer. Transfer from other Rensselaer curricula to this program is limited to students who have demonstrated academic excellence.

Although guaranteed admission to Albany Law School is only available to selected first-year students, conditional admission is available to accepted Rensselaer students who meet specified achievement levels in their undergraduate program. In addition Rensselaer has established a working relationship with Columbia University Law School that allows an especially gifted STS-law student to become a candidate for admission after his or her third year at Rensselaer, if nominated by a committee within the STS Department. Rensselaer's inclusion in Columbia's Accelerated Interdisciplinary Legal Education Program (AILE) has made this opportunity possible. Accelerated Law students have also applied successfully to such law schools as Harvard, Stanford, Cornell, and the University of Virginia for early admission. The STS Department provides whatever assistance possible for such students. Students should notify the STS undergraduate adviser before the end of the sophomore year to inform him that they wish to be nominated.

Five Year B.S.-M.S.
A five-year combined B.S.-M.S. program is available for Rensselaer undergraduates who wish to earn a graduate degree in STS. Students may apply to the program on completion of their sophomore year.

Graduate Programs
Rensselaer's Department of Science and Technology Studies is one of the few such departments in the world to offer STS degrees from the baccalaureate to the doctoral level. Graduate programs lead to the Master of Science and the Doctor of Philosophy degrees in Science and Technology Studies. Rensselaer is committed to developing STS as a field of inquiry emphasizing the historical, political, and social dimensions of our technological society. The diverse STS faculty, drawn from a broad range of academic disciplines, provides students with the concepts and methods necessary to develop an integrated understanding of the culture’s technological and human elements.

STS faculty and graduate students are involved in a variety of research projects. Topics include careers of technical professionals, the ethnography of science, history of medicine and the role of quantification, and the nature of scientific inquiry. Additional research efforts focus on gender and reproductive technology;
science, psychiatry, and religion; the politics of technological design; community impact of technological change; the impact of scientific instruments; science/government relations; and ethics and values in science and engineering.

**Master’s Programs**

The STS Department offers several master of science degree options, all of which are described in detail below.

**Master of Science**

This program is designed for students with undergraduate training in the natural and social sciences, engineering, or humanities. In addition, many entering students have substantial career experience relevant to this program.

Completing the M.S. degree in STS requires 30 credit hours, including a six-credit-hour master’s thesis or internship. Among the required core courses are STSS-6010 Concepts in Science and Technology Studies, STSS-6110 Research Methods for STS, STSS-6020 Research Seminar, and STSH-6020 Values and Policy. Also required is one additional 6000-level STS seminar (or an independent readings course with three or more students enrolled).

The program offers an opportunity to take technical courses in other Rensselaer departments that are relevant to the student’s Plan of Study. It also offers substantial individual consultation and flexibility in designing course work and developing the thesis/internship option. Students may use the M.S. as a professional program or as a prerequisite for doctoral studies at Rensselaer or other universities.

**Five-Year B.S.-M.S.**

As mentioned in the department’s Special Undergraduate Opportunities section, a five-year combined B.S.-M.S. program is available for Rensselaer undergraduates wishing to earn an STS graduate degree. Students may apply to the program on completion of their sophomore year.

**Master of Science/Doctor of Philosophy**

Students who are enrolled in the M.S./Ph.D. program must complete a total of 90 credit hours (up to 30 in the dissertation). Students in the combined M.S./Ph.D. program are not required to take the core master’s courses, but they must take the core doctoral courses and at least one of the following capstone experiences: a research seminar (generally offered as a topics course) or an independent study course, either of which must result in an article-length research project of publishable quality; a master’s thesis; or a master’s internship. After completing the core doctoral courses, capstone experience, and 30 credit hours, students will be awarded the degree of Master of Science in Science and Technology Studies.

**Doctoral Programs**

The STS Department’s doctor of philosophy program trains professionals for stewardship of the complex technological society as researchers, teachers, planners, and advisers in academic, government, and private institutions.

The curriculum requires a total of 90 credit hours (up to 30 in dissertation) including 60 hours of study beyond the master’s degree. Required courses in the core are STSS-6200 Science Studies, STSS-6040 Technology Studies, STSS-6100 Policy Studies, STSS-6120 Advanced Research Methods, and a theory option. STSS-6030 Nature of Inquiry, STSS-6360 Advanced Contemporary Political Thought, and topics courses such as STSS-6961 Structuralism and Post-Structuralism, STSS-6962 Social Theory, and STSS-6963 Feminist and Postcolonial Theory, or other STS graduate courses approved by the graduate committee to meet the theory option. The graduate committee may also approve substitutions of other graduate courses for Advanced Research Methods, either inside or outside the STS Department. Remaining course work is drawn from three areas: policy studies, science studies, and technology studies. At least two additional 6000-level STS seminars (or independent reading courses of three or more
students) must be included. The field examination covers two of these three areas.

**Special Graduate Opportunities**

**Certificate in Multidisciplinary Environmental Studies**

This certificate may be awarded to master’s students who choose to add 15 credit hours of science and/or engineering, earning the equivalent of a minor in environmental science or engineering. Courses may include BIOL-4850 Principles of Ecology, CHEM-4810 Chemistry of the Environment, ERTH-4810 Environmental Geology, and IENV-4700 One Mile of the Hudson River, or other environmental courses as approved by the adviser. Students should focus their additional 15 credit hours on an area of study that complements their individual project work in the rest of the program.

**Course Descriptions**

Courses related to all STS curricula are described in the Course Descriptions section of this catalog under the department codes STSH or STSS. Students in these programs often take courses in other Institute departments appropriate to their specific interests.

**Interdisciplinary Degree Programs**

Few institutions better understand that, in an increasingly complex world, individuals often need a broader range of knowledge than can be obtained through study of a single discipline. As a result, the School of Humanities and Social Sciences has developed a strong selection of multidisciplinary academic and research programs. These programs cross not only disciplines, but allow Rensselaer schools to offer the highest possible degree of multidisciplinary education.

In addition to opportunities in the School of Humanities and Social Sciences described below, other interdisciplinary programs available at Rensselaer are listed in the Interdisciplinary Studies Index of this catalog and are described fully in the section pertaining to the associated Institute school or division.

**Electronic Media, Arts, and Communication**

**Chair:** Kathy High, Arts

**Chair:** Cheryl Geisler, Language, Literature, and Communication

The Electronic Media, Arts, and Communication (EMAC) program offers undergraduates the opportunity to study electronic arts in relation to the communication field and prepares them for careers in the applied arts and communication. The B.S. degree in EMAC is earned from both the Department of the Arts and the Department of Language, Literature, and Communication (LL&C). It combines offerings in LL&C and ARTS for a total of at least 60 credit hours and consists of courses taken at four levels.

Required introductory courses at Level One are COMM-1510 Introduction to Communication Theory; COMM-2610 Introduction to Visual Communication; ARTS-1020 Media Studio: Imaging; ARTS-1010 Media Studio: Video/Audio. In Level Two, students complete 24 credit hours in selected LL&C and Arts courses in writing (4), art history/theory (4), and a short list of courses in the areas of electronic art; electronic communication and design; literature, film, media and culture; and professional communication. Level Three requires an EMAC concentration, consisting of 12 credit hours of 4000-level LL&C, Arts, or other courses as part of a Plan of Study approved by the academic adviser. Senior students at Level Four take eight credits of Honors Capstone or Culminating Experience Sequence, consisting of four credit hours in each of their last two semesters.
### First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IHSS-196x (COMM-1510) Introduction to Communication Theory</td>
<td>ARTS-1010 Media Studio: Video/Audio</td>
</tr>
<tr>
<td></td>
<td>ARTS-1020 Media Studio: Imaging</td>
<td>COMM-2610 Intro. to Visual Communication</td>
</tr>
<tr>
<td></td>
<td>Hum.Elective/First-Year Studies</td>
<td>CSCI-1010 Intro. to Computer Programming</td>
</tr>
<tr>
<td></td>
<td>MATH-1500 Calculus I for H&amp;SS</td>
<td>CSCI-1100 Computer Science I</td>
</tr>
</tbody>
</table>

### Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EMAC Writing Elective</td>
<td>EMAC Art History/Theory</td>
</tr>
<tr>
<td></td>
<td>EMAC Electronic Art Elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Social Science Elective</td>
<td>EMAC Language, Literature and</td>
</tr>
<tr>
<td></td>
<td>BIOL-1010 Introduction to Biology</td>
<td>Comm. Elective</td>
</tr>
</tbody>
</table>

### Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EMAC Electronic Art Elective</td>
<td>EMAC Concentration</td>
</tr>
<tr>
<td></td>
<td>EMAC Language, Literature, and</td>
<td>Humanities Elective</td>
</tr>
<tr>
<td></td>
<td>Comm. Elective</td>
<td>Hum./Soc. Sci. Elective</td>
</tr>
<tr>
<td></td>
<td>Social Science Elective</td>
<td>Free Elective</td>
</tr>
<tr>
<td></td>
<td>Math/Science Elective</td>
<td></td>
</tr>
</tbody>
</table>

### Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EMAC Concentration</td>
<td>EMAC Concentration</td>
</tr>
<tr>
<td></td>
<td>Honors Capstone or Culminating</td>
<td>Free Elective</td>
</tr>
<tr>
<td></td>
<td>Experience Sequence</td>
<td>Honors Capstone or Culminating</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td>Experience Sequence</td>
</tr>
</tbody>
</table>

---

1. EMAC Writing Electives (4 credit hours required) WRIT-1110; WRIT-2110.
2. Art History/Theory Electives (4 credit hours required) ARTS-2500; ARTS-2530; ARTS-2540; ARTS-2510; ARTS-296x (approved Topics Courses in Art History/Theory); ARTS-4100; ARTS-4120.
3. EMAC Computer Arts Electives (8 credit hours required) ARTS-2010; ARTS-2020; ARTS-2030; ARTS-2040.
4. EMAC Language, Literature, and Communication Electives (8 credit hours required) Students must select courses from two separate areas of EMAC LL&C Electives. These areas are: Electronic Communication and Design; Literature, Film, Media and Culture; and Professional Communication.
5. EMAC Concentration (12 credit hours at 4000 level required) A thematic concentration is required of all EMAC majors. ARTS, LL&C, or any thematically related courses in other departments may be taken with approval of the academic adviser. This concentration will provide depth and may lead toward (or be taken in conjunction with) the EMAC Honors Capstone or Culminating Experience Sequence.
6. BIOL-1010 is not required if first major is Engineering.
Ecological Economics, Values, and Policy

Director: Steven Breyman, Science and Technology Studies

The Departments of Science and Technology Studies and Economics jointly offer the Program in Ecological Economics, Values, and Policy (EEVP), which offers both bachelor’s and master’s of science degrees. EEVP combines the best of both departments—economic analysis and a broader humanities and social science analysis that emphasize the roles science and technology play in today’s global economy and culture. Given the strong interdisciplinary background acquired in EEVP, graduates can play leading roles in resolving the critical environmental and social problems of the 21st century. The United Nations reports that the demand for EEVP-type program graduates exceeds the supply. According to the UN, it is crucial that we educate people who understand that “sustainable development does not merely deal with the conservation of nature or the management of ecosystems, but more broadly and fundamentally aims at new models of societal development and social transformation.”

Baccalaureate Program

EEVP has four main components: eight economics courses (all courses are four credit hours), eight STS courses, 10 science or engineering courses, and four free electives as well as an H&SS First-Year Studies course. The science and engineering component should earn the equivalent of a minor in environmental science or engineering, which can cover such topics as ecology, environmental chemistry or geology, water and wastewater infrastructure, and hazardous waste management. In addition, the economics and social science courses that form the core of EEVP equip students with a variety of skills and methods to assess the economic costs, human health impacts, and quality-of-life changes that are associated with the evolving lifestyles and living conditions in today’s society. Cultural studies add to EEVP’s strong global focus, which prepares students for a successful career in policy analysis, international development, project assessment, and many other areas. The capstone STS Senior Project, on which students work with an adviser from each department, integrates the economics and STS components.

To illustrate a typical distribution of these courses over the regular four-year period of bachelor’s degree study, a sample semester layout is provided below.

Concentrations

The EEVP curriculum offers several concentration “options” each of which is described below.

STS Concentration option In addition to taking STSS-2300 Environment and Society in the fall of the second year, students choose one other STS concentration course: STSS-2100 Medicine and Society; STSS-2400 Law, Values, and Public Policy; STSS-2500 Historical and Cultural Perspectives on Science and Technology; or STSS-2200 Engineering, Design, and Society.

STS Methods/Statistics option Students choose one course in either research methods, such as STSS-4130 Decision Making; or statistical methods, such as PSYC-2310 Experimental Methods and Statistics or DSES-4140 Statistical Analysis.

STS Technical option Students choose four courses, together with the Institute Science core requirement of six courses, to earn the equivalent of a minor in environmental science or engineering. This option includes such courses as BIOL-4850 Principles of Ecology, CHEM-4810 Chemistry of the Environment, and ERTH-1200 Geology II (surface geology) or ENVE courses as approved by the adviser.
Advanced STS option Students choose two courses from the following list:

- ECON-4210 Cost Benefit-Analysis
- ECON-4230 Environmental Economics
- ECON-4240 Natural Resource Economics, and
- ECON-4250 Ecological Economics
- STSH-4300 Environmental Philosophy
- STSS-4320 Environmental Politics and Policy
- STSS-4400 Risky Technologies
- STSS-4500 Environment and Development
- STSS-4540 Environment, Law, and Culture
- STSS-4920 Topics in STS (e.g., Environment and Health)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH-1500</td>
<td>Calculus I for H&amp;SS</td>
<td>4</td>
<td>MATH-1520</td>
</tr>
<tr>
<td>STSH-1110</td>
<td>Science Seq. I</td>
<td>4</td>
<td>STSS-2300</td>
</tr>
<tr>
<td>ECON-1200</td>
<td>Introductory Economics</td>
<td>4</td>
<td>Free Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Year</td>
<td>Credit hours</td>
<td>Spring</td>
<td>Credit hours</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCI-1100</td>
<td>Computer Science I</td>
<td>4</td>
<td>ECON-2020</td>
</tr>
<tr>
<td>ECON-2010</td>
<td>Managerial Economics</td>
<td>4</td>
<td>Free Elective</td>
</tr>
<tr>
<td></td>
<td>STS Concentration Option</td>
<td>4</td>
<td>STS Methods/Stats. Opt</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Third Year</td>
<td>Credit hours</td>
<td>Spring</td>
<td>Credit hours</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STSS-4800</td>
<td>STS Tech. Option</td>
<td>4</td>
<td>ECON-4120</td>
</tr>
<tr>
<td></td>
<td>Public Service Internship</td>
<td>4</td>
<td>Adv. STS Option</td>
</tr>
<tr>
<td></td>
<td>Economics Option</td>
<td>4</td>
<td>Free Elective</td>
</tr>
<tr>
<td></td>
<td>Economics Option</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Credit hours</td>
<td>Spring</td>
<td>Credit hours</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STSS-4980</td>
<td>STS Tech. Option</td>
<td>4</td>
<td>STSS-4980</td>
</tr>
<tr>
<td></td>
<td>STS Senior Project</td>
<td>4</td>
<td>Free Elective</td>
</tr>
</tbody>
</table>
**Professional Master’s Program**

The Departments of Science and Technology Studies and Economics also jointly offer an EEVP master’s program. The program builds on Rensselaer’s nationally recognized expertise and course offerings in the economic, political, social, cultural, and ethical implications in the interactions of science, technology, environment, and society. EEVP is meant for early and mid-career professionals in state and local government, secondary education, business, and the nonprofit sector (professionals in environmental nongovernmental organizations) who wish to upgrade their skills and advance their careers.

Building on required courses in environmental, ecological, and natural resource economics and in environmental philosophy and policy, EEVP helps students acquire the skills such as policy analysis and ecological valuation that are necessary to address the complex multidisciplinary problems any society faces in areas such as environment and health, appropriate technology, and sustainable development. The 21st century promises a continuation of the march toward globalization. Dealing with the prospects and problems of a world economy and the growing human impact on the natural world requires an education that is both broad and deep. EEVP offers “hands on” training that puts into practice the slogan “think globally, act locally.”

Economics requirements for the EEVP master’s degree include two common courses for a total of six credit hours—ECON/STSS-6600 Seminar in EEVP (the common introductory course) and ECON/STSS-6650 EEVP Professional Project (the common capstone course). Also required are four economics courses for a minimum of 12 credit hours.

Additional requirements include ECON-6490 Introduction to Economic Theory, and two of the following three courses:

- ECON-6230 Advanced Environmental Economics
- ECON-6240 Advanced Natural Resource Economics
- ECON-6250 Advanced Ecological Economics

Sample electives are ECON-4150 Economics of Government Regulation, ECON-4160 Public Finance, ECON-4190 International Economics, ECON-6210 Advanced Cost Benefit Analysis, ECON-6550 Advanced Microeconomic Analysis, and ECON-6590 Advanced Macroeconomic Analysis. In addition, students must take four STS course electives for a minimum of 12 credit hours.

STS course requirements for the EEVP masters include STSH-6300 Environmental Philosophy, STSS-6300 Environment and Social Theory, and one of the following two courses:

- STSS-6320 Environmental Politics and Policy
- STSS-6540 Environment, Law, and Culture


All together, the program totals 10 courses for a minimum of 30 credit hours and can be completed with all 6000-level courses at three credit hours. However, if students choose to take one or two 4000-level electives at four credit hours, they will earn either 31 or 32 credit hours.
Minds and Machines Program
Director: Bram van Heuveln, Cognitive Science

Department Home Page: http://www.cogsci.rpi.edu/minds_machines

The Minds & Machines Program is an applied cognitive science undergraduate program. Students who enter the Minds & Machines Program perform cutting-edge scientific research into the nature of cognition (human or non-human), and apply this knowledge to create artificial intelligence and cognitive technologies. Students can also address philosophical questions about the fundamental nature of our mind and the ethical implications of artificial intelligence and other advanced cognitive technology. Minds & Machines Students meet biweekly to interact with fellow Minds & Machines students and associated faculty, work side by side with professors and graduate students in any of our dedicated labs, and attend guest lectures given by dominant thinkers in the field.

Baccalaureate Program
Cognitive science is a highly interdisciplinary science at the intersection of philosophy, psychology, and computer science. In recognition of this, students in the undergraduate Minds & Machines Program are required to do a dual major, one major reflecting the ‘Minds’ part, the other major reflecting the ‘Machines’ part. The dual major also reflects the program’s aim of doing scientific investigation alongside technological application and innovation. Some popular trajectories are:

- Computer Science and Psychology—appropriate for students interested in the understanding and computational modeling of human reasoning, perception, and learning.
- Computer Science and Philosophy—appropriate for students interested in artificial intelligence and philosophy of mind.
- Computer Systems Engineering (or Electrical or Mechanical Engineering)—appropriate for students interested in robotics.
- Information Technology and Psychology—appropriate for students interested in cognitive engineering (engineering technology that dovetails with, or enhances, human cognition).

In addition to developing technical expertise in the relevant areas of information technology, the Minds and Machines dual majors allow students to analyze and discuss (with the help of science fiction films) the “big” questions that research and engineering in the program raise. These include questions such as: How smart can machines get? Can they become as smart as human? Is creativity the line that machines will never cross? Can machines be conscious, and how can humans tell?

For further information, access the program’s Web site at http://www.cogsci.rpi.edu/minds_machines or contact the director at heuweb@rpi.edu.
### Sample Four-Year Sequence for CSCI/PSYC Dual Major

#### First Year

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong></td>
<td><strong>Spring</strong></td>
</tr>
<tr>
<td>PSYC-1200 General Psychology</td>
<td>PSYC-2310 Experimental Methods &amp; Statistics</td>
</tr>
<tr>
<td>CSCI-1100 Computer Science I</td>
<td>CSCI-1200 Computer Science II</td>
</tr>
<tr>
<td>MATH-1020 Calculus I</td>
<td>MATH-1020 Calculus II</td>
</tr>
<tr>
<td>IHSS-19xx Minds &amp; Machines</td>
<td>MATH-2800 Intro. to Discrete Structures</td>
</tr>
</tbody>
</table>

#### Second Year

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong></td>
<td><strong>Spring</strong></td>
</tr>
<tr>
<td>PHIL-2140 Introduction to Logic</td>
<td>PSYC-2120 Introduction to Cognitive Science</td>
</tr>
<tr>
<td>CSCI-2300 Data Structures &amp; Algorithms</td>
<td>CSCI-2400 Models of Computation</td>
</tr>
<tr>
<td>CSCI-2500 Computer Organization</td>
<td>Math Elective</td>
</tr>
<tr>
<td>BIOL-1010 Intro. to Biology</td>
<td>Psychology Elective</td>
</tr>
</tbody>
</table>

#### Third Year

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong></td>
<td><strong>Spring</strong></td>
</tr>
<tr>
<td>AI for Cog. Sci.</td>
<td>PSYC-4370 Cognitive Psychology</td>
</tr>
<tr>
<td>CSCI-4430 Programming Languages</td>
<td>CSCI-4210 Operating Systems</td>
</tr>
<tr>
<td>Physics I</td>
<td>Science Elective</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
</tbody>
</table>

#### Fourth Year

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fall</strong></td>
<td><strong>Spring</strong></td>
</tr>
<tr>
<td>Psychology Elective</td>
<td>Senior Thesis</td>
</tr>
<tr>
<td>CSCI-4440 Software Design &amp; Doc.</td>
<td>Computer Science Elective</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>Computer Science Elective</td>
</tr>
<tr>
<td>Free Elective</td>
<td>Free Elective</td>
</tr>
</tbody>
</table>
Sample Four-Year Sequence for CSCI/PHIL Dual Major

First Year

**Fall** | **Credit hours** | **Spring** | **Credit hours**
--- | --- | --- | ---
IHSS-19xx | Minds & Machines | CSCI-1200 | Philosophy Elective
CSCI-1100 | Computer Science I | MATH-1020 | Computer Science II
MATH-1010 | Calculus I | MATH-2800 | Calculus II
PHYS-1100 | Physics I | Intro. to Discrete Structures | 4

**Second Year**

**Fall** | **Credit hours** | **Spring** | **Credit hours**
--- | --- | --- | ---
PHIL-2140 | Introduction to Logic | CSCI-2400 | Models of Computation
CSCI-2300 | Data Structures & Algorithms | PHIL-2120 | Introduction to Cognitive Science
CSCI-2500 | Computer Organization | | Math Elective
BIOL-1010 | Intro. to Biology | | Free Elective

**Third Year**

**Fall** | **Credit hours** | **Spring** | **Credit hours**
--- | --- | --- | ---
| AI for Cog. Sci | | Computability and Logic | 4
CSCI-4430 | Programming Languages | CSCI-4210 | Operating Systems
Science Elective | | Computer Science Elective | 4

**Fourth Year**

**Fall** | **Credit hours** | **Spring** | **Credit hours**
--- | --- | --- | ---
| Philosophy Elective | Senior Thesis | 4
CSCI-4440 | Software Design & Doc. | Computer Science Elective | 4
Computer Science Elective | Free Elective | 4
Free Elective | Free Elective | 4
Product Design and Innovation

Chair: Sharon Anderson-Gold, Science and Technology Studies (Interim)
Chair: Mark Steiner (Interim)

The Schools of Engineering, Management, and Humanities and Social Sciences jointly offer this dual major program called Product Design and Innovation (PDI). The program offers two tracks: the first satisfies the requirements for the B.S. programs in both Mechanical Engineering and Science, Technology, and Society (STS); and the second satisfies the requirements for the B.S. program in both Management and STS.

PDI prepares students to become innovative designers capable of developing and designing the advanced products and technologies for the 21st century. Built around a design studio every semester, PDI combines the technical, aesthetic, and cultural sophistication of Rensselaer’s engineering, information technology, or building science curricula with the insight and vision of the humanities and social sciences disciplines in the STS curriculum.

Through the PDI core of design studios taken every semester, students obtain a hands-on opportunity that brings together the major curricula. The accredited mechanical engineering curriculum provides a fundamental education in mechanical engineering with a focus on design methodology in general and mechanical design techniques in particular (see template below). The management curriculum provides a fundamental education in management with course offerings in product design, marketing, and entrepreneurship. The STS curriculum provides a fundamental education in the historical, ethical, cultural, and policy dimensions of product development and innovation, including numerous case studies of successes and failures through which students learn what it takes to be effective leaders of design teams. On this basis, the design studies help students explore and develop their creativity while building a portfolio of design experiences continuously throughout all four years.

The design experiences range over a breadth of problems, from larger systemic problems to smaller focused problems, so that students have broad exposure to all the different applications of design practice. Some fall and spring semester studios are taught as a sequence to give students experience with the design process from beginning to implementation. The studios also develop students’ skills in using computers and other advanced tools and techniques, as well as in drawing, visualizing, communicating, and working together.

In short, the program’s design aspects provide the elements necessary to put students’ creativity to work as leaders of design and innovation, whether it is in a multinational business at the cutting edge of the global market or in a smaller business that creates an unusual solution to a local problem.
# PDI Curriculum in Mechanical Engineering and STS

## First Year
### Fall
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHSS-19xx</td>
<td>Design Studio I</td>
<td>4</td>
</tr>
<tr>
<td>STSH-1110</td>
<td>Introduction to STS (First-Year Designs,</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Studies or Design, Innovation, and Society</td>
<td></td>
</tr>
<tr>
<td>MATH-1010</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM-1100</td>
<td>Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-1200</td>
<td>Engineering Graphics and CAD</td>
<td>1</td>
</tr>
</tbody>
</table>

### Spring
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2020</td>
<td>Design Studio II</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-1100</td>
<td>Introduction to Eng. Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MATH-1020</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>STSH-2960</td>
<td>Design, Culture, and Society</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-1300</td>
<td>Engineering Processes</td>
<td>4</td>
</tr>
<tr>
<td>STSS-2200</td>
<td>Engineering, Design, and Society</td>
<td></td>
</tr>
</tbody>
</table>

## Second Year
### Fall
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHSS-2500</td>
<td>Design Studio III</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-1600</td>
<td>Materials Science for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>MATH-2400</td>
<td>Intro. to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>PHYS-1100</td>
<td>Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CSCI-1190</td>
<td>C Programming</td>
<td>1</td>
</tr>
</tbody>
</table>

### Spring
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2050</td>
<td>Introduction to Eng. Design with Prof.</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-2530</td>
<td>Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-2090</td>
<td>Engineering Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS-1200</td>
<td>Physics II for Engineers</td>
<td>4</td>
</tr>
</tbody>
</table>

## Third Year
### Fall
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSH-4960</td>
<td>Design Studio V</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-2350</td>
<td>Embedded Control</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-2710</td>
<td>General Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENGR-2600</td>
<td>Modeling and Analysis of Uncertainty</td>
<td>3</td>
</tr>
<tr>
<td>STSS-4xxx</td>
<td>STS Advanced Option</td>
<td>4</td>
</tr>
</tbody>
</table>

### Spring
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-4960</td>
<td>Design Studio VI</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-4050</td>
<td>Modeling and Control</td>
<td>4</td>
</tr>
<tr>
<td>STSS-4xxx</td>
<td>STS Advanced Option</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-2250</td>
<td>Thermos/Fluids Engineering I</td>
<td>4</td>
</tr>
</tbody>
</table>

## Fourth Year
### Fall
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANE-4940</td>
<td>Design Studio VIII or elective</td>
<td>4</td>
</tr>
<tr>
<td>MANE-4260</td>
<td>Design of Mechanical Systems</td>
<td>4</td>
</tr>
<tr>
<td>STSS-4xxx</td>
<td>Public Service Internship</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-4300</td>
<td>Electronic Instrumentation</td>
<td>4</td>
</tr>
<tr>
<td>MANE-4030</td>
<td>Elements of Mechanical Design</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-4010</td>
<td>Professional Develop. III</td>
<td>1</td>
</tr>
</tbody>
</table>

### Credit hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSS-4980</td>
<td>STS Senior Project</td>
<td>4</td>
</tr>
<tr>
<td>MANE-4020</td>
<td>Thermal and Fluids Engineering II</td>
<td>4</td>
</tr>
<tr>
<td>MANE-4040</td>
<td>Mechanical Systems Lab</td>
<td>2</td>
</tr>
<tr>
<td>MANE-4020</td>
<td>Thermal and Fluids Lab</td>
<td>2</td>
</tr>
</tbody>
</table>

---

1. These courses may be taken in any order.
2. PDI Studios II, V, VI, and VII satisfy the mechanical engineering requirement for the concentration elective.
3. For PDI students, Design Studio III can be substituted for one of the two STS concentration options.
4. IED is Design Studio IV.
5. Candidate courses include: STSS-4350; STSS-4230; STSS-4110; STSS-4250; STSS-4310; STSS-4560; and STSS-4650.
6. Design of Mechanical Systems is Design Studio VII.
7. This course satisfies the requirement for Professional Development II.
8. The STS Senior Project can be combined with the Capstone Design Studio to make an eight-credit capstone studio project.
9. See adviser for fall/spring order of fourth-year courses.
### PDI Curriculum in Management and STS

#### First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-1500 Calc. For Management</td>
<td>4</td>
</tr>
<tr>
<td>MGMT-1100 Intro. to Management</td>
<td>4</td>
</tr>
<tr>
<td>STSH-1110 Intro. to STS</td>
<td>4</td>
</tr>
<tr>
<td>IHSS-1500 Design Studio 1</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-1520 Math Methods in Mgmt</td>
<td>4</td>
</tr>
<tr>
<td>MGMT-2510 Micro Comp. &amp; Applic</td>
<td>4</td>
</tr>
<tr>
<td>STSH-296x Design, Culture &amp; Society</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-2020 Design Studio 2</td>
<td>4</td>
</tr>
</tbody>
</table>

#### Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT-2100 Statistical Methods</td>
<td>4</td>
</tr>
<tr>
<td>MGMT-2300 Accounting</td>
<td>4</td>
</tr>
<tr>
<td>ECON-1200 Introductory Economics</td>
<td>4</td>
</tr>
<tr>
<td>STSH-296x Design Studio 3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT-4110 Operations Management</td>
<td>4</td>
</tr>
<tr>
<td>CSCI-1960 Introduction to Computer Prog</td>
<td>4</td>
</tr>
<tr>
<td>MGMT-4460 Design Studio 4: Consumer</td>
<td>4</td>
</tr>
<tr>
<td>Design Studio 4: Consumer</td>
<td>4</td>
</tr>
<tr>
<td>Behavior &amp; Product Design</td>
<td>4</td>
</tr>
</tbody>
</table>

#### Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT-4110 Quant. Methods for Business</td>
<td>4</td>
</tr>
<tr>
<td>MGMT-4430 Marketing Principals</td>
<td>4</td>
</tr>
<tr>
<td>MGMT-4140 Computer Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>STSS-4xxx Advanced Option</td>
<td>4</td>
</tr>
<tr>
<td>STSH-4961 Design Studio 5</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT-4850 Managing High Perf. Org. I</td>
<td>4</td>
</tr>
<tr>
<td>MGMT-1260 External Environ. of Business</td>
<td>4</td>
</tr>
<tr>
<td>STSS-4xxx Advanced Option</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 4960 Design Studio 6</td>
<td>4</td>
</tr>
</tbody>
</table>

#### Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT-4860 Managing High Perf. Org. II</td>
<td>4</td>
</tr>
<tr>
<td>STSH-4800 Public Service Internship</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-1010 Intro. to Biology</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 4870 Strategy and Policy</td>
<td>4</td>
</tr>
<tr>
<td>STSS-4980 Senior Project</td>
<td>4</td>
</tr>
<tr>
<td>Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Design Studio 8</td>
<td>4</td>
</tr>
</tbody>
</table>

---

1. PDI Management students are not required to take the Management Leadership sequence, and MGMT-2100 also fulfills the science core requirement.

2. The STS Advanced Option includes any 4000-level STS course, but for PDI students the following are especially recommended: STSS-4350; STSS-4960; STSS-4230; STSS-4560; and STSS-4650.

3. For management students, Design Studio 7 and 8 may be replaced by MGMT 4510 and MGMT 4530. They may also be taken as vertical studies with PDI 5 and 6 or other capstone courses worked out in coordination with the PDI program director and STS adviser.