Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrees Offered and Associated Departments</td>
<td>131</td>
</tr>
<tr>
<td>Overview of Undergraduate Programs</td>
<td>131</td>
</tr>
<tr>
<td>Overview of Graduate Programs</td>
<td>135</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>136</td>
</tr>
<tr>
<td>Chemical and Biological Engineering</td>
<td>145</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>152</td>
</tr>
<tr>
<td>Decision Sciences and Engineering Systems</td>
<td>164</td>
</tr>
<tr>
<td>Electrical, Computer, and Systems Engineering</td>
<td>178</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>196</td>
</tr>
<tr>
<td>Mechanical, Aerospace, and Nuclear Engineering</td>
<td>202</td>
</tr>
<tr>
<td>Engineering at Hartford</td>
<td>219</td>
</tr>
<tr>
<td>Interdisciplinary Programs and Research</td>
<td>225</td>
</tr>
<tr>
<td>Engineering Science</td>
<td>225</td>
</tr>
<tr>
<td>Product Design and Innovation</td>
<td>225</td>
</tr>
<tr>
<td>Center for Composite Materials and Structures</td>
<td>227</td>
</tr>
<tr>
<td>Center for Image Processing Research</td>
<td>228</td>
</tr>
<tr>
<td>Center for Infrastructure and Transportation Studies</td>
<td>229</td>
</tr>
<tr>
<td>Center for Multiphase Research</td>
<td>229</td>
</tr>
<tr>
<td>Center for Next Generation Video</td>
<td>230</td>
</tr>
<tr>
<td>Center for Subsurface Sensing and Imaging Systems</td>
<td>230</td>
</tr>
</tbody>
</table>
School of Engineering

Dean: William A. Baeslack, III

Associate Deans: Lester A. Gerhardt, Robert W. Messler, Jr.

Director of Core Engineering: Kevin C. Craig

School of Engineering Home Page: http://www.eng.rpi.edu

Rensselaer’s School of Engineering is committed to technological excellence in integrating research and education and in educating for career success.

Outstanding leadership in innovative and progressive education is a Rensselaer hallmark. Rensselaer is renowned for producing visionary and versatile technological leaders with a superior reputation for their global impact. Solidly endowed with the fundamentals of math, science, and engineering as well as invaluable research, communication, and entrepreneurial expertise, Rensselaer engineering graduates demonstrate an exceptional propensity for practical application of their knowledge. In addition, the inclusion of a strong humanities and social sciences component within this broad education and a full spectrum of activities, both in and out of the classroom, enhance human relations skills and generate a commitment to ethical behavior and social responsibility.

Highly cognizant of the constant evolution in the field of engineering, Rensselaer is dedicated to continually enhancing and revitalizing its curricula and facilities. Evidence of this dedication is its initiatives in such emerging fields as information technology and biotechnology. Among these are the construction of a new biotechnology and interdisciplinary research building, the ongoing attraction of leaders in these fields to our already excellent engineering faculty, and the development of expanded opportunities for research within these and other developing fields at both the graduate and undergraduate levels.

Key to promoting such new initiatives, as well as enhancing traditional disciplines, is Rensselaer’s world-class faculty, most of whom hold the highest attainable degree in their fields. In addition to being actively engaged in research and teaching, most also keep their finger on the pulse of the world through consulting or entrepreneurial endeavors.

Especially appealing to Rensselaer’s exceptional faculty and students alike are its superlative laboratories and facilities that enable them to conduct outstanding research. These include studio classrooms that, in addition to being equipped with highly advanced interactive learning tools, provide the small comfortable environment that enhances the School of Engineering’s personalized approach to teaching, maximizing student interaction among classmates and professors, and encouraging hands-on, collaborative projects.

Initiatives in mobile computing and interactive delivery are also features that distinguish Rensselaer engineering programs from those at other universities. As noted in the Educational Programs and Resources section of this catalog, the Institute mandated that all undergraduate students have laptop computers as of the fall of 2002. This mandate was issued in recognition that the entire world is moving in the direction of near constant computer access. In addition, the program supports the interactive delivery initiative, in which lectures are combined with recitation, modeling, simulation, and laboratory exercises. Unlike the traditional professor-centered straight lecture format, interactive delivery centers on the students and allows them to interact with each other as well as the instructor. Through these new programs, students experience greater freedom, are no longer tied to a desk for their computing needs, and are prepared for what they will find in the real world.

Teamwork is yet another aspect of real-world engineering that Rensselaer cultivates through both its
coursework and facilities. A prime example is the Institute’s 11,000 square-foot O.T. Swanson Multidisciplinary Design Laboratory (MDL). This distinctive, first-class facility consists of a state-of-the-art design space, rapid prototyping and fabrication space, and a system integration space for both mechanical and electrical as well as electromechanical products. Here, students work in cross-disciplinary teams on a variety of industry- and service organization-sponsored and entrepreneurial projects, all with practical and real-life applications.

Augmenting the course experience for both undergraduate and graduate students is access to numerous research centers and computing resources. These include one of the largest Class 100 clean-room facilities on an academic campus, a 100-ton-g centrifuge, a linear accelerator (LINAC), the Advanced Manufacturing Laboratories, and the student-faculty shop. Engineering students use extensive interactive workstation facilities for studies in computer-aided design, analysis, and/or manufacturing. Taught and researched in the clean-rooms are integrated circuit and materials characterization, subsonic and supersonic flow, tribology, viscoelasticity, two-phase flow, mass spectrometry, and ion physics.

Other specialized and more discipline-oriented facilities include laboratories in areas such as fluidization, heat transfer, biochemical engineering, biomedical engineering, structures, earthquake engineering, image processing, plasma dynamics, mechatronics, microelectronics, microwaves, electron optics, electrical machines, electron microscopy and materials characterization, subsonic and supersonic flow, tribology, viscoelasticity, two-phase flow, mass spectrometry, and ion physics.

Sponsoring both undergraduate and graduate research are a variety of government (federal and state) agencies as well as private industry. As a result of focusing research on topics of significant commercial interest, Rensselaer, in relation to other major university engineering programs, has one of the largest fractions of support from private industry.

Rensselaer offers research opportunities in major interdisciplinary research centers, which primarily involve School of Engineering faculty and students. Among these centers are the Center for Advanced Technology (CAT), the Center for Integrated Electronics (CIE), The Center for Nanotechnology Research, and the Scientific Computation Research Center (SCOREC). These centers are interdisciplinary, so that center projects include students from each of several curricula. For example, in the CIE, students from many departments (e.g., Physics; Materials Science and Engineering; Mechanical, Aerospace; and Nuclear Engineering; Electrical, Computer, and Systems Engineering; Chemical Engineering; and Civil and Environmental) are members of teams that conduct government- and industry-supported basic and applied research.

Projects currently under way include multilevel interconnects, chemical-mechanical polishing, polymers for interlevel dielectrics, compound semiconductors, and wireless manufacturing programs that employ flexible technologies and organizations, as well as improved communications to help solve manufacturing problems. Also world-renowned is SCOREC’s simulation-based engineering approach in which state-of-the-art computers and numerical models are applied to problems of great societal need.

In addition to the major Institute centers, the School of Engineering conducts research in its own multidisciplinary centers. These include the Center for Composite Materials and Structures, the Center for Infrastructure and Transportation Studies, the Center for Image Processing Research, and the Center for Multiphase Research. At the department level, the School offers seven additional centers: the Bioseparations Research Center, the Center for Services Research and Education, the Agile Manufacturing Research Center, the Statistical Consulting Research Center, the Center for Glass Science and Technology, the Geotechnical Centrifuge Research Center, and the Flexible Manufacturing Center.
Substantial Rensselaer research is also conducted outside these major centers, some involving multiuniversity collaboration. These research centers complement the following seven academic departments: Biomedical Engineering; Chemical Engineering; Civil and Environmental Engineering; Decision Sciences and Engineering Systems; Electrical, Computer, and Systems Engineering; Materials Science and Engineering; and Mechanical, Aerospace, and Nuclear Engineering.

All departments offer both undergraduate and graduate curricula and degree programs in their fields.

Degrees Offered and Associated Departments

<table>
<thead>
<tr>
<th>Aeronautical Engineering</th>
<th>Mechanical, Aerospace, and Nuclear Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Engineering</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>Civil and Environmental Engineering</td>
</tr>
<tr>
<td>Computer Systems Engineering</td>
<td>Electrical, Computer Systems Engineering</td>
</tr>
<tr>
<td>Decision Sciences and Engineering Systems</td>
<td>Decision Sciences and Systems Engineering</td>
</tr>
<tr>
<td>Electric Power Engineering</td>
<td>Electrical, Computer, and Systems Engineering</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Mechanical, Aerospace, and Nuclear Engineering</td>
</tr>
<tr>
<td>Engineering Physics</td>
<td>Mechanical, Aerospace, and Nuclear Engineering</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>Civil and Environmental Engineering</td>
</tr>
<tr>
<td>Industrial and Management Engineering</td>
<td>Decision Sciences and Engineering Systems</td>
</tr>
<tr>
<td>Manufacturing Systems Engineering</td>
<td>Decision Sciences and Engineering Systems</td>
</tr>
<tr>
<td>Materials Engineering</td>
<td>Mechanical, Aerospace, and Nuclear Engineering</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>Mechanical Engineering, Aerospace, and Nuclear Engineering</td>
</tr>
<tr>
<td>Mechanics</td>
<td></td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>Mechanical, Aerospace, and Nuclear Engineering</td>
</tr>
<tr>
<td>Nuclear Engineering and Science</td>
<td>Mechanical, Aerospace, and Nuclear Engineering</td>
</tr>
<tr>
<td>Operations Research and Statistics</td>
<td>Decision Sciences and Engineering Systems</td>
</tr>
<tr>
<td>Transportation Engineering</td>
<td>Civil and Environmental Engineering</td>
</tr>
</tbody>
</table>

Overview of Undergraduate Programs

Baccalaureate Program

In general, the Bachelor of Science program is intended for students seeking careers in engineering-related areas or as a basis for advanced study in fields other than engineering. To obtain a B.S. in an engineering field, students must fulfill the general requirements listed in the Academic Information and Regulations section of this catalog and satisfactorily complete the prescribed engineering curriculum. Certain courses, such as one-credit-hour nonengineering courses graded on a satisfactory/unsatisfactory basis or more than six credit hours of ROTC courses, cannot be applied toward the degree requirements. Also noteworthy is that courses in accounting, industrial management, finance, entrepreneurship, and personnel administration that are offered by the School of Management, as well as ROTC courses, will not satisfy the humanities and social sciences requirement, but may be taken as free electives.

Although many students enter at the freshman level and achieve all their education objectives at Rensselaer, a significant number find it accommodating and advantageous to enter at intermediate lev-
Entrance into the engineering program is particularly attractive to graduates of two-year colleges. All such students enter with advanced standing and credit according to their credentials.

Professional Program

For most students, specialization and determination of the degree program that matches their individual career goals takes place during the third year. At this point, a student may pursue either a fourth year for their Bachelor of Science (B.S.) degree in an engineering specialty or, if accepted by the Office of Graduate Education for the professional program, undertake a coherent program integrating advanced undergraduate and graduate study leading to the Master of Engineering (M.Eng.) degree in a specific field, and receiving a Bachelor of Science along the way. This professional program offers post-baccalaureate studies specifically intended as preparation for professional engineering practice. Graduates of other colleges and universities may be admitted with advanced standing (the Professional Program excepted) if they have appropriate accredited baccalaureate engineering degrees or the equivalent. Admission to a professional degree program is based on demonstration of adequate preparation and competence. The faculty in each curriculum judges qualifications for admission. Application should be made directly to the Office of Graduate Education.

Engineering Core Curriculum

The core engineering program forms the base for all engineering curricula. In addition to providing a solid base for later specialization, it allows students who are undecided as to their choice of engineering field or discipline an opportunity to clarify their interests. Such students can, by using the electives in the first two years, sample various disciplinary offerings to aid in choosing which engineering field to pursue.

The core engineering curriculum in the general format is presented on the following pages. Specific curricula for each field of specialization are presented under the corresponding disciplinary headings for students who are certain of their disciplinary choices and wish to begin specializing earlier than the third year. Two kinds of programs are listed under each discipline: (1) a four-year baccalaureate program leading to the Bachelor of Science degree; (2) a professional program, taken in the fourth and fifth years, leading to the B.S. and M.Eng. degrees.

While undergraduates normally are not allowed to take graduate-level courses (levels 6000–9000) except by special permission of the instructor, a student admitted to the Professional School may be required to take certain courses in the 6000–9000 range and may elect other such courses with the approval of his or her adviser.

All School of Engineering students entering Rensselaer directly from high school begin their curricula with the core engineering program. The primary objective of this program is to provide students with a liberal education and to develop a broad scientific and technical foundation for their future specialization. This predisciplinary-specific program usually extends through the second but may extend into the third academic year. During this phase, the primary focus is on the foundations of engineering as a unified field. The foundation in mathematics, physics, chemistry, and biology, combined with the specified engineering sciences (e.g., strength of materials or thermal-fluids, etc.) satisfies basic technical knowledge requirements without regard to the intended field of specialization. In the humanities and social sciences area, courses not only enrich the student as an individual but also provide the perspective professionals need to make decisions that will affect society. The course Introduction to Engineering Design is intended to enhance the student's ability to apply knowledge resourcefully to resolve engineering problems.

The electives within the core engineering program, together with the required basic content, give each student the opportunity to refine his or her goals and develop a broad and solid foundation. Elective courses also allow undecided students to sample professionally oriented courses from several curricula so as to make a more enlightened choice of major. A student can also choose electives to provide a broader base
or use them to focus on a particular field at an early stage. An imaginative student, with faculty counsel, can develop any number of creative study programs. It is also possible to major in one branch of engineering and obtain a concentration in a second branch.

Students need not begin specializing in a particular area until the fourth semester of study. However, when choosing electives, students must consider that each engineering discipline requires certain courses be taken earlier as field (or discipline) prerequisites.

To provide proper guidance, each student is assigned a faculty adviser who is knowledgeable in core engineering matters and can help the student plan a program to best meet his or her educational and career objectives. Once a student identifies a specific curriculum to pursue, a new adviser, who is particularly aware of the opportunities for advanced study in this area, is assigned.

The combination of the core engineering program with the subsequent discipline-specific courses provides a coherent yet flexible curriculum that allows students to obtain an engineering education at all levels in multiple focus areas. The overall School of Engineering program is structured to permit students to select plans of study that fit their individual goals, aptitudes, and interests. It also enables students to enter and leave at points most appropriate to their individual plans and to facilitate entrance at intermediate levels in the undergraduate and graduate programs.

All elements of the curricula, including both core and discipline-specific courses, are under continuous review to ensure the application of new pedagogues and teaching methods and the introduction of courses covering the latest technological and computing and analysis advances. Topics such as quality, ethics, cultural sensitivity, safety, environmental impact, and contemporary issues related to science and engineering, are constantly integrated into curricula. Additionally included in Rensselaer engineering curricula is the topic of entrepreneurship. Through these efforts, Rensselaer ensures that leadership, interpersonal communications, teamwork, problem formulation, system synthesis, critical thinking, and problem-solving skills are practiced and enhanced.

To provide a clear picture of what prospective engineering students can expect in their first two years at Rensselaer, the core engineering program proceeds as follows:

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGR-1100</td>
<td>Intro. to Engineering Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGR-1200</td>
<td>Engineering Graphics and CAD</td>
<td>1</td>
</tr>
<tr>
<td>Fall</td>
<td>MATH-1010</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>CHEM-1300</td>
<td>Chemistry Principles for Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>ENGR-1300</td>
<td>Engineering Processes</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td>ENGR-1310</td>
<td>Intro. to Engineering Electronics</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>MATH-1020</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td>PHYS-1100</td>
<td>Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

1 These required courses may be taken in either order.
2 Depending on major

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH-2400</td>
<td>Intro. to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>PHYS-1200</td>
<td>Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td>Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>CSCI-1190</td>
<td>Beginning C for Engineers</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intro. to Engineering Design (with PDI)</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>ENGR-2040</td>
<td>Engineering Processes</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td>Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td>Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td>4</td>
</tr>
</tbody>
</table>
Electives
In the core engineering curriculum, electives may be selected from, but are not limited to, the following list of suggested courses. However, in most engineering curricula, specific electives are required or recommended during the core engineering phase. Students should consult the curriculum information for their intended fields of specialization before selecting electives.

Engineering Electives
- ENGR-2090 Engineering Dynamics
- ENGR-2250 Thermal and Fluids Engineering I
- ENGR-2350 Embedded Control
- ENGR-2530 Strength of Materials
- ENGR-2600 Modeling and Analysis of Uncertainty
- ENGR-2830 Nuclear Phenomena for Engineering Applications
- ENGR-4300 Electronic Instrumentation
- ENGR-4750 Engineering Economics and Project Management
- CHME-2010 Material, Energy, and Entropy Balances
- ECSE-2010 Electric Circuits
- ECSE-2410 Signals and Systems
- ECSE-2610 Computer Components and Operations
- MEAE-2060 Aerospace Fundamentals
- DSES-2210 Production and Cost Accounting
- MATH-4800 Numerical Computing
- CSCI-1100 Computer Science I
- ENGR-1600 Materials Science for Engineers
- CHEM-2250 Organic Chemistry I

For a complete description of all engineering courses, see the Course Description section of this catalog.

Special Undergraduate Opportunities

Undergraduate Research Experience
At Rensselaer, involving undergraduates in real-world engineering research is of paramount importance. Through the Undergraduate Research Program (URP), described in the Educational Resources and Programs section of this catalog, undergraduates work directly with faculty and/or graduate students on projects requiring critical inquiries. These studies involve exciting areas of leading-edge technological research and have the potential to result in groundbreaking discoveries. Involvement in undergraduate research can be arranged strictly for the experience, for credit, or for pay. Students apply through direct contact with faculty seeking students via Web site or campus advertisements.

Cooperative Education
Students may augment their academic course work with work experience through the Cooperative Education program. Studies and work assignments are scheduled after consultation with their curriculum adviser. Although many co-op students complete their academic program in four years, some delay graduation for a year to obtain additional work experience. Additional information on Rensselaer’s Cooperative Education Program can be found in the Student Life section of this catalog under Career Development Center.

Study Abroad/Exchange Programs
Rensselaer’s School of Engineering advocates a voluntary international experience as an ideal means to promote a broad-based engineering education, develop the “citizen engineer,” and provide undergraduate students with a global perspective. To facilitate such opportunities, the School has helped formulate and actively participates in the Global Engineering Education Exchange (Global E’) program.

Oriented primarily to undergraduate students, this program offers them the chance to spend one or two semesters at an international university or one semester at the university followed by an industrial intern-
ship in that country. Preferred timing for this experience is the junior year, and students normally apply in the fall or spring of their sophomore year.

Application involves completing forms regarding required courses or desired electives. The Institute for International Education, which administers this program, matches the student to a participating university based on that student's educational discipline requirements, cultural experience, and language background. The student continues to pay tuition at the home institution (Rensselaer) and continues to be covered by financial aid mechanisms, insurance, etc. However, the student pays room and board to the host institution. Consequently, except for travel expenses, students participating in this program should incur no additional costs.

Global E3 offers students the chance to study and learn in the native language of the host country. Such opportunities, for example, are available in France, Germany, Italy, Spain, and Austria. Additional opportunities allow students to pursue foreign study opportunities at universities where the courses are presented and taught in English. These include the Technical University of Denmark, Budapest University of Hungary, and universities in the United Kingdom, Finland, Korea, Singapore, and Japan, among others. As a result, while students may benefit from knowledge of a foreign language, it is not a requirement for participation in this program. Refresher language instruction in French and German is usually given in the summer preceding the fall semester for those who have prior language experience and will be studying in the foreign language.

Approximately 30 U.S. universities and 50 universities in the rest of the world participate in the Global E3 program. Included among these nations are: Australia, Austria, Denmark, Finland, France, Germany, Hungary, Italy, Japan, Korea, Mexico, Singapore, Spain, Sweden, and the United Kingdom. People interested in the program should contact Professor Lester A. Gerhart, Associate Dean, at (518) 276-6203 or via e-mail at gerhal@rpi.edu. The program's Web site may be found at http://www.iie.org/pgms/global-e3.

Additional opportunities designed for the Rensselaer population in general are also available. Information on these opportunities can be found in the Educational Programs and Resources section of this catalog.

Overview of Graduate Educational Programs

In preparing students to reach the pinnacle of their expertise within their chosen profession, the School of Engineering’s graduate programs strive to:

- Develop students’ skills for conceiving, conducting, and communicating creative thought through advanced study in the classroom and inquiry-based independent and collaborative original research.
- Deepen students’ knowledge while refining their ability to think critically and nurturing their ability to identify new areas for expanding knowledge and transferring it to application and practice.

The School of Engineering offers four graduate degrees through which students may achieve these objectives. These include the Master of Science (M.S.), Master of Engineering (M.Eng.), Doctor of Engineering (D.Eng.), and Doctor of Philosophy (Ph.D.) degrees.

Master’s Programs

Both the M.S. and M.Eng. degree programs focus on engineering fundamentals at advanced levels, and both include significant elective opportunities that permit students to individualize their study plans. Either program provides an excellent basis for further graduate work in engineering, and neither includes a foreign language requirement.

The Master of Engineering program is designed primarily for students preparing for professional practice
and does not require a thesis. Admission is based on the student’s demonstration of adequate preparation and competence. Applications for admission should be transmitted to the Office of Graduate Education. Note that many students complete a Master of Engineering and then pursue a Ph.D.

The Master of Science program encompasses diverse educational needs and is designed primarily for students intending to obtain a Ph.D. degree. Admission requires a baccalaureate degree in an area appropriate to the individual’s proposed plan of graduate study, and could conceivably be outside the field of engineering. Those who do not have a B.S. in Engineering, however, may be required to complete some extra course work that does not qualify for graduate credit. Depending on the department in which the degree is being pursued, a thesis may be required.

Doctoral Programs

A doctoral student formally affiliates with the department where activities most closely relate to his or her advanced study goals. However, the range of inquiry may cut across department and school lines, so that research opportunities are extremely broad, and students can pursue highly individualized programs. There are no foreign language requirements.

The Doctor of Engineering degree is characterized by the special nature of the thesis. Thus the student, working with an adviser, proposes an engineering problem of substance and develops a solution. The student must demonstrate ability to apply scientific principles to meet engineering needs, with due regard to social and economic factors and within a reasonable time constraint. The presentation and defense of his or her conclusions before a doctoral subcommittee and guests serves as the final examination for the degree.

The Doctor of Philosophy program is the traditional degree with a thesis that involves substantial original research. The program follows the general rules of the Office of Graduate Education.

Biomedical Engineering

Chair: Robert L. Spilker

Department Home Page: http://www.bme.rpi.edu/

Biomedical engineers are typically involved in research and design. They discover new knowledge that they apply to designing new engineering devices and systems for the fields of medicine and biology. Among the devices that biomedical engineering (BMED) has produced are noninvasive body imaging systems, critical-care monitoring instruments used in intensive care units, and a wide spectrum of implants, such as artificial joints, oral implants, and vascular grafts, all of which are used to replace diseased tissues. With new discoveries related to stem cells, genomics, and proteomics, BMED is becoming increasingly involved in cellular and molecular biology for basic research and design of new devices and technologies. For instance, many biomedical engineers are helping to advance the new field of tissue engineering. In this capacity, they use basic knowledge about the cellular/molecular processes of tissue regeneration to help design replacement tissues and organs. At Rensselaer, a key focus is functional tissue engineering, which encompasses the biology and engineering necessary to understand, characterize, synthesize, and shape the requisite mechanical behavior of living tissues.

Founded upon a strong engineering base, the BMED curriculum combines significant life science content with courses that bring engineering solutions to medical needs. BMED students may shape a mechanical or materials concentration to develop knowledge and skills in cell and tissue engineering or implant design.
Research Innovations and Initiatives

Cell and Tissue Engineering
Cultured mammalian cells are used to study, in vitro and at the molecular level, systems of biomedical interest. Experimental projects in progress include investigations of the mechanisms of osteoblast interactions with orthopedic/dental implant materials; structure and biochemistry of the cell/biomaterial interface; the effects of mechanical stresses on cellular function, morphology, and structure; and the development of engineered tissues to repair or replace damaged tissues. Theoretical approaches are used in modeling proliferation of anchorage-dependent, contact-inhibited cells, and in quantifying morphological responses of cells to mechanical forces.

Computational Bioengineering
The level of complexity inherent in the study of human systems such as musculoskeletal or cardiovascular systems frequently dictates the need for numerical solution methods. Rensselaer is developing and applying high-performance computational methods to the study of diaphyseal joint mechanics, cardiovascular mechanics, dental mechanics, and imaging. Projects involving the development of computational methods for bioengineering applications are done in collaboration with Rensselaer’s Scientific Computation Research Center, as well as the Center for Subsurface Sensing and Imaging Systems (CenSISS).

Orthopedic Biomechanics
In an aging individual, musculoskeletal well-being is a key factor that contributes towards quality of life. The Orthopedic Biomechanics Laboratory uses a combination of cellular and tissue-level approaches to (1) identify changes in the biological and mechanical characteristics of skeletal tissues with emphasis on aging and osteoporosis; and (2) develop microenvironments conducive to regeneration of lost or damaged matrix. Current research areas include biology and mechanics of hard tissue, cellular control of tissue growth and development, mechanobiology of skeletal tissue regeneration, and fatigue fractures of long bones.

The Bone-Implant Interface
In oral/maxillofacial surgery, orthopedic surgery, and tissue engineering, events at the bone-implant interface ultimately determine clinical implant performance. All such interfaces transmit loads, so interfacial biomechanics and biomaterials become extremely relevant. Continuing projects include (1) characterization of applied forces and moments on oral implants in vivo, and (2) assessment of bone biology at loaded versus unloaded bone-implant interfaces. New aspects of these projects include digital image-based strain analysis of interfaces and cellular/molecular-level approaches to understand interfacial bone healing and remodeling under the influence of interfacial biomechanics and biomaterials.

Other Research
Biomedical engineering research at Rensselaer involves three schools within the Institute and interactions with Albany Medical College, the University of Pennsylvania, Columbia University, Université de Montréal, UC San Francisco, Center for Tissue Integrated Prostheses (Spokane, Wash.), and several other hospitals.
Faculty*

Professors

Bizios, R.—Ph.D. (Massachusetts Institute of Technology); cellular bioengineering, cell/biomaterial interactions, biomaterials.

Brunski, J.B.—Ph.D. (University of Pennsylvania); dental biomechanics and implants, bone healing at interfaces, biomaterials.

Newell, J.C.—Ph.D. (Albany Medical College); cardiopulmonary physiology, systems modeling, impedance imaging.

Roysam, B.—D.Sc. (Washington University); electrical, computer, and systems engineering; intelligent imaging at low SNR; parallel computation; biomedical applications.

Spilker, R.L.—Sc.D. (Massachusetts Institute of Technology); computational mechanics and biomechanics (department chair).

VonMaltzahn, W.W.—Ph.D. (University of Hannover, Germany) bioinstrumentation, physiological measurements and modeling.

Associate Professors

DePaola, N.—Ph.D. (MIT-Harvard Medical School); biofluid mechanics, cellular bioengineering.

Xu, G.X.—Ph.D. (Texas A&M University); environmental health physics, health and medical physics, Monte Carlo simulations, anatomical modeling, biomedical use of radiation.

Assistant Professors

Stegemann, J.P.—Ph.D. (Georgia Institute of Technology); cell and tissue engineering, vascular biology extracellular matrix biology.

Plopper, G.—Ph.D. (Harvard University Medical School); extracellular matrix and tissue engineering.

Vashishth, D.—Ph.D. (University of London, UK); orthopedics biomechanics, hard tissue biology (aging and osteoporosis), sports medicine (stress fractures and running injuries), skeletal tissue regeneration.

Affiliated Faculty

Cheney, M.—Ph.D. (Indiana University); professor of mathematical sciences; applied mathematics, differential equations, mathematical computed tomography.

Doremus, R.D.—Ph.D. (University of Illinois, University of Cambridge); professor of glass and ceramics science; physical chemistry, solutions of polyelectrolytes and proteins.

Isaacson, D.—Ph.D. (New York University); professor of mathematics and computer science; electric current computed tomography.

Savic, M.—Eng.D.Sc. (University of Belgrade); professor of electrical, computer, and systems engineering; controlled cryodestruction, signal processing.

Adjunct Faculty

Bowser, S.S., Jr.—Ph.D. (University of Albany, SUNY); cell structure and function, particularly cell motility and cytoskeleton-membrane interactions, effects of mechanical forces on cell physiology, biology of benthic foraminifera.

Cousins, J.R.—Ph.D. (Johns Hopkins University); magnetic resonance imaging and spectroscopy.

Del Vecchio, P.J.—Ph.D. (Fordham University); biology, vascular endothelium.

Edic, P.M.—Ph.D. (Rensselaer Polytechnic Institute); electrical impedance imaging and magnetic resonance imaging computation.

Feustel, P.—Ph.D. (Albany Medical College); cerebral circulation and respiration regulation.

* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2003 Board of Trustees meeting.
Flaherty, L.—Ph.D. (Cornell University Medical College); molecular genetics; mammalian genetics. Director, Genomics Institute, Wadsworth Center of the NYS Dept. of Health.

Jacobs, R.L.—M.D. (State University of Iowa); orthopedics, physiology, bone biochemistry.

Lee, B.Y.—M.D. (Seoul National University School of Medicine); surgical research, peripheral vascular surgery.

Metsger, D.—Ph.D. (University of Illinois at Chicago); regulation of immunity, mucosal immunology, immune response to xenogeneic tissue implants.

Minnear, F.—Ph.D. (Oregon Health Sciences University) Professor, The Center for Cardiovascular Sciences, Albany Medical Center; regulation of endothelial barrier function.

Rizzo, V.—Ph.D. (New York Medical School) Assistant Professor, The Center for Cardiovascular Sciences, Albany Medical College. Mechano-chemical signaling in endothelial cell canelae.

Rangert, B.—Ph.D. (Chalmers Institute of Technology); dental implants, biomaterials, biomechanics.

Singer, H.—Ph.D. (University of Virginia); vascular smooth muscle cell biology, calcium/calmodulin-dependent protein kinases, intracellular regulation of smooth muscle contractility.

Turner, J.N.—Ph.D. (State University of New York, Buffalo); biophysics, anatomic pathology, quantitative light microscopy.

Emeritus Faculty

Ostrander, L.E.—Ph.D. (University of Rochester); information processing, biomedical signal analysis, human factors in medical equipment design.

Zelman, A.—Ph.D. (University of California, Berkeley); membrane transport phenomena, food processing.

Undergraduate Programs

Objectives of the Undergraduate Curriculum

The Biomedical Engineering Department’s baccalaureate program will:

- Provide students with a solid foundation in mathematics and computation and in the biological and physical sciences.
- Train students in the application of the engineering problem-solving skills of analysis, modeling, and simulation to current problems in medicine and biology.
- Train students in engineering design of biomedical products, processes, and systems.
- Provide students with specialized technical expertise to prepare for industrial, academic, or other careers in biomedical engineering.
- Develop students with strong written and oral presentation skills, as well as the ability to lead and contribute to multidisciplinary teams in industrial, academic, and clinical environments.
- Provide students with a broad learning experience, including the study of the humanities and social sciences, with an emphasis on ethics and social responsibility.
- Prepare students for life-long learning using interactive studio environments and modern learning cycle strategies.

Students may achieve these objectives through completion of either the baccalaureate program leading to the B.S. degree or the professional program leading to the M.Eng. degree. Both programs are described in detail below. However, to ensure selection of the appropriate concentration and courses to meet individual interests and goals, students should consult their academic adviser as early as possible.
Baccalaureate Program
In lieu of the general core engineering program presented earlier, students who identify biomedical engineering as their discipline may follow the program outlined below. This curriculum requires a minimum of 126 credit hours.

First Year

Fall
- ENGR-1100 Intro. to Engineering Analysis4
- CHEM-1300 Chemistry Principles for Engineers4
- MATH-1010 Calculus I ..4
- ENGR-1330 Intro. to BME 11
- Human or Soc. Sc. Elective 24

Credit hours

Spring
- ENGR-1200 Engineering Graphics and CAD1
- ENGR-1600 Materials Science for Engineers 34
- MATH-1020 Calculus II4
- PHYS-1100 Physics I ...4
- Human or Soc. Sc. Elective 44

Second Year

Fall
- ENGR-2050 Intro. to Engineering Design4
- MATH-2400 Intro. to Differential Equations4
- PHYS-1200 Physics II ...4
- Human or Soc. Sc. Elective 24

Credit hours

Spring
- BMED-2200 Dynamic Systems for Biomedical Engineering4
- CSCI-1100 Computer Science I4
- Concentration I 4 ..4
- Human or Soc. Sc. Elective 44

Third Year

Fall
- BIOL-4290 Human Physiological Systems4
- Concentration II 5 ..4
- Concentration III 54
- Concentration IV 54

Credit hours

Spring
- ENGR-2600 Modeling Analysis of Uncertainty3
- BMED-4500 Advanced Systems Physiology4
- Concentration V 4 ..4
- Concentration VI 44
- Professional Development II 72

Fourth Year

Fall
- BMED-4010 Biomedical Engineering Lab4
- Human or Soc. Sc. Elective 24
- Free Elective I 6 ..3
- Free Elective II 63–4

Credit hours

Spring
- BMED-4600 BME Design 84
- Concentration VII 44
- Free Elective III 63–4
- Free Elective IV 63–4
- BMED-4010 Professional Development III 81

1. ENGR-1330 or ENGR-1310 or ENGR-1300 may be taken in the first or second year.
2. Placement of humanities and social science electives can be varied with free electives. The courses counted as free electives must show a minimum of 12 credit hours. The total credit hours for the degree is 126–128.
4. For both the materials/mechanics concentrations, choose ENGR-2250.
5. BMED specified concentration courses (see listing p. 156). Check prerequisites to assure that courses are taken in appropriate order. Free electives may be moved to different semesters to accommodate timing of concentration courses.
6. The minimum total credit hours of free electives is 12, with no restrictions on the included number of 3 and 4 credit hour courses.
7. Professional Development II will be fulfilled from a published list at the start of each semester and can be taken either semester; Professional Development III can be taken either semester of the senior year. Professional Development I is part of ENGR-2050.
8. Capstone and writing-intensive course.
Concentrations
Biomedical Engineering offers two concentrations. Students interested in implant design, cell and tissue engineering, and computational biomechanics, for instance, may select a materials or mechanics concentration. For additional concentration courses, consult a department adviser. Course selections from these concentrations are given below and the typical sequence is designated by S2 for spring 2nd year; F3 for Fall 3rd year, etc.

<table>
<thead>
<tr>
<th>Materials Emphasis</th>
<th>Mechanics Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2250 Thermal and Fluid Engineering I (S2)</td>
<td>ENGR-2090 Engineering Dynamics (F3)</td>
</tr>
<tr>
<td>MTLLE-4100 Thermodynamics of Materials (F3)</td>
<td>ENGR-2250 Thermal and Fluids Engineering I (S2)</td>
</tr>
<tr>
<td>MTLLE-4030 Introduction to Glass Science (F3) or</td>
<td>ENGR-2530 Strength of Materials (F3)</td>
</tr>
<tr>
<td>MTLLE-4050 Introduction to Polymers (F3)</td>
<td>BMED-4540 Biomechanics (F3)</td>
</tr>
<tr>
<td>BMED-4540 Biomechanics (F3)</td>
<td>BMED-4240 Tissue-Biomaterial Interactions (S3)</td>
</tr>
<tr>
<td>BMED-4240 Tissue-Biomaterial Interactions (S3)</td>
<td>MANE-4420 Introduction to Finite Elements (Fall)</td>
</tr>
<tr>
<td>MTLLE-2100 Structure of Engineering Materials (S3)</td>
<td>MANE-4030 Elements of Mechanical Design (S4) or</td>
</tr>
<tr>
<td>MTLLE-4250 Properties of Engineering Materials II (S4)</td>
<td>ENGR-2350 Embedded Control (S4) or</td>
</tr>
<tr>
<td></td>
<td>MANE-4610 Vibrations (S4)</td>
</tr>
</tbody>
</table>

Humanities and Social Sciences Electives
In this area, electives are based on the Institute and School of Engineering requirements. Students are urged to elect humanities and social science sequences, through which they will obtain adequate breadth and depth in subject areas. Students desiring minors in humanities or social sciences must consult the school or department in which the courses are offered to obtain further information and specific requirements.

Minor Programs
The Department of Biomedical Engineering offers a minor in biomedical engineering for undergraduates majoring in other engineering and science fields. The selection of courses must have the prior approval of the department and must form a coherent program. Below is a list of suggested courses for a minor in biomedical engineering.

For Mechanical or Materials Engineering Majors

| BMED-4010 Biomedical Engineering Laboratory |
| BIOL-4290 Human Physiology Systems |
| BMED-4500 Advanced Systems Physiology |
| BMED-4540 Biomechanics |
| BMED-4240 Tissue-Biomaterial Interactions |
Graduate Programs

The department offers programs leading to M.Eng., M.S., D.Eng., and Ph.D. degrees. Persons seeking admission to any of these graduate degree programs in biomedical engineering should have their Graduate Record Examination (GRE) aptitude test scores sent to Graduate Admissions Office. Applicants who cannot take the test should attach an explanation to the application. Submission of the GRE advanced test scores is also recommended. For further information on the GREs, write to Graduate Record Examinations, Box 955, Princeton, NJ 08541.

Master’s Programs

Rensselaer requires completion of at least 30 credit hours (with satisfactory grades) beyond the bachelor’s degree. At least 15 of these credit hours must have suffix numbers 6000–6990.

Master of Science

The Biomedical Engineering M.S. degree can be obtained with or without a thesis. The latter option is recommended for students who do not plan further graduate studies. The thesis option is advised for students who plan to obtain a higher graduate degree. The master’s thesis should contribute new knowledge to the field of study.

Students pursuing either M.S. option must complete a minimum of 30 credits. In consultation with the adviser, they must develop a plan of study that satisfactorily meets Institute requirements, core concentration requirements, and recommended technical electives. For students completing a thesis, at least 24 credits must be met in these requirements, and a maximum of six credits may be earned by thesis work.

Master of Engineering

This option is recommended for students interested in industrial positions. The M.Eng. requires completion of a minimum of 30 credits. Students pursuing this option must also develop a plan of study with their adviser which includes at least 24 credits, that satisfactorily meet Institute requirements, core concentration requirements, and recommended technical electives. Although a project is not required, an applied research, development, or design project may be completed, with the academic adviser’s approval, for a maximum of six credits. The project should represent the solution of a significant engineering problem.

Concentrations

At the M.Eng. and M.S. level in Biomedical Engineering, programs of study fall into three different concentration areas:

Biomedical Instrumentation

Bioinstrumentation, systems modeling, and computer technology and techniques have been the basis for some of the most advanced and intensive achievements in biomedical engineering. Students in this concentration prepare to work in the design and construction of transducers and electronic processing equipment for online measurements of physiological parameters. Techniques for computer simulation and pattern recognition, are additional aspects of advanced training in this concentration. There are active research programs in electrical impedance imaging, and image processing that cover the theoretical basis and practical applications of noninvasive internal imaging of animate and inanimate objects.

Biomaterials

Engineering applications for the design of prosthetic devices such as implants or tissue-engineered constructs require sophisticated knowledge of the structure, properties, and behavior of a wide range of mater-
rials—metals, ceramics, glasses, polymers, composites, and biological materials. Implant design and the new field of tissue engineering involve a working knowledge of material properties, tissue-biomaterial interactions, and biocompatibility.

Biomechanics
Mechanics has helped solve problems involving cell physiology, blood flow, skin rheology, bone mechanics, load-bearing prostheses design, joint lubrication methods, and countless other items of interest in medicine. Continuum mechanics, finite element analysis, strain gauge techniques, model analysis techniques, and micromechanics are some of the methods used to attack these problems in biomechanics.

Biomedical Engineering Requirements
In addition to the Biomedical Engineering core requirements, students must also meet the concentration and elective requirements.

<table>
<thead>
<tr>
<th>Core Requirements</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED-4010 Biomedical Engineering Lab I</td>
<td>4</td>
</tr>
<tr>
<td>BMED-4500 Advanced Systems Physiology*</td>
<td>4</td>
</tr>
</tbody>
</table>

Biomaterial Concentration requirements

<table>
<thead>
<tr>
<th>Biomaterial Concentration requirements</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSES-6020 Design of Experiments (or an equivalent course)</td>
<td>3</td>
</tr>
</tbody>
</table>

Biomechanics Concentration requirements

<table>
<thead>
<tr>
<th>Biomechanics Concentration requirements</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED-4540 Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>DSES-6020 Design of Experiments (or an equivalent course)</td>
<td>3</td>
</tr>
</tbody>
</table>

*New graduate students entering BMED with no previous biological course work can take BMED-4290 as a background course, but in this case, this course is not counted in the credits for the master’s or Ph.D. degree.
Recommended technical electives for a BMED Biomaterials Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED-6240</td>
<td>Tissue-Implant Interfaces</td>
<td>MTLE-4050</td>
<td>Introduction to Polymers</td>
</tr>
<tr>
<td>BMED-6290</td>
<td>Biomechanics of Hard Tissues</td>
<td>MTLE-6040</td>
<td>Principles of Crystallography and X-ray Diffraction</td>
</tr>
<tr>
<td>BMED-6500</td>
<td>Mechanobiology</td>
<td>MTLE-6830</td>
<td>Deformation of Materials and Rheology</td>
</tr>
<tr>
<td>MTLE-6090</td>
<td>Electron Microscopy of Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTLE-6150</td>
<td>Fracture of Solids</td>
<td>MANE-6180</td>
<td>Mechanics of Composite Materials</td>
</tr>
<tr>
<td>BMED-6280</td>
<td>Biomechanics of Soft Tissues</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommended technical electives for BMED Biomechanics Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED-6240</td>
<td>Tissue-Implant Interfaces</td>
<td>MANE-4330</td>
<td>Analytical Methods in Solid Mechanics I (recommended for the Ph.D. Track)</td>
</tr>
<tr>
<td>BMED-6280</td>
<td>Biomechanics of Soft Tissues</td>
<td>MANE-6340</td>
<td>Analytical Methods in Solid Mechanics II (recommended for the Ph.D. Track)</td>
</tr>
<tr>
<td>BMED-6290</td>
<td>Biomechanics of Hard Tissues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED-6500</td>
<td>Mechanobiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANE-4240</td>
<td>Introduction to Finite Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANE-6660</td>
<td>Fundamentals of Finite Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTLE-6150</td>
<td>Fracture of Solids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTLE-6830</td>
<td>Deformation of Materials and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rheology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doctoral Programs

Matriculation into the doctoral program is based upon prior demonstration of a high level of academic achievement in graduate and/or undergraduate work. Advanced study and research are conducted under the guidance of a faculty member of the Department of Biomedical Engineering and an interdisciplinary committee. Usually 54 credits of formal courses are required in addition to the residency and thesis requirements. These requirements are formalized in a plan of study that is prepared in consultation with the research adviser and doctoral committee.

Course Descriptions

Courses directly related to all Biomedical Engineering curricula are described in the Course Description section of this catalog under the department codes BMED, CHME, ECSE, MTLE, and MANE.
Chemical and Biological Engineering

Acting Chair: B. Wayne Bequette
Director, Industrial Liaison Program: E. Bruce Nauman

Department Home Page: http://www.eng.rpi.edu/dept/chem-eng/

The chemical conversion of resources into new, more useful forms has been the traditional concern of chemical engineers. In recent years, a critical concern with the depletion of resources has developed, leading to increased efforts to conserve, recycle, and find alternatives. Concurrently, with high-technology advances in biochemical and semiconductor processing, these developments pose challenges that fall on the chemical engineering profession.

The major educational objective in the Howard P. Isermann Department of Chemical Engineering is to prepare students to enter their engineering practice dealing with chemical as well as physical processes to meet the challenges of the future. The chemical engineering curriculum, which builds on chemistry, mathematics, basic sciences, and engineering science, culminates in professional applications in which theory is tempered by engineering art and economic principles. Through this curriculum, graduates are prepared equally well for professional practice or for advanced study.

Opportunities for creative and satisfying practice in chemical engineering can be found in conception, design, control, or management of processes involving chemical change. These processes range from the more conventional conversion of crude oil into petrochemicals and plastics, to the microbiological transformation of hardwood chips into specialty alcohols, or to the creation of semiconductor devices from silicon wafers. Diverse career choices exist not only in the chemical industry, but in virtually all processing industries, including agricultural, biochemical, chemical, food, nuclear, semiconductor processing, and environmental operations. By avoiding specialization and emphasizing basic principles, the program prepares its graduates for positions spanning the spectrum of activities from research and development, to process and project engineering, to production, or to technical marketing.

Research and Innovation Initiatives

Fluid Mechanics
Projects in this area involve the mechanics of fluidized beds, spouted beds, bubbles, low Reynolds number hydrodynamics, kinetic theory, two-phase flow, and surfactant behavior in organic-aqueous systems.

Heat Transfer
Topics of interest include free convection stability, forced convection (particularly in laminar flow systems), fluid-to-particle heat transfer in fluidized and spouted beds, and boiling. Studies on heat and mass transfer at interfaces are also under way.

Mass Transport
Research is in progress on simultaneous heat and mass transfer in porous media; the effects of interfacial phenomena on mass transfer; diffusion and mixing in laminar flow systems; transient dispersion processes in capillaries, porous media and open channels; and crystal growth phenomena.

Thermodynamics
Activities include molecular simulation, the analysis and correlation of phase-equilibrium data, the development and evaluation of fluid-phase equations of state, and the study of topics in solution thermodynamics.
Air Resources
Research activities include field and modeling investigations directed toward the understanding of the acid rain phenomenon, fundamental studies of the experimental and theoretical adsorption with chemical reaction of trace gases into moving drops, and improved understanding of liquid phase reaction mechanisms. The development of improved incineration of hazardous wastes requires basic understanding of the time-temperature history of combustion gases. Experimental investigations into the combustion of simulated chlorinated wastes are also in progress.

Interfacial Phenomena
Problems under investigation include interfacial resistance to mass transfer and the interaction between surface forces and interfacial convection. Work in the interfacial area is concerned with heat, mass, and momentum transfer in multicomponent, ultrathin, liquid films. Research includes studies on condensation and evaporation in the contact line region, distillation from ultrathin films, lubrication, surface-tension-driven instabilities in atomically clean liquid metals, pattern formation in dendritic growth, protein-solid interaction, and the design of biocompatible surfaces.

Biochemical and Biomedical Engineering
Research projects in biochemical engineering emphasize biocatalysis, bioseparations, and metabolic engineering. Fundamental and applied aspects of enzyme technology, mammalian cell culture, membrane sorption and separation, displacement chromatography, and salt-induced precipitation are important areas of focus. New designs involving aqueous and nonaqueous enzyme technology are being developed, as are new types of membrane-entrapped enzyme and animal-cell-suspension reactors, which are being built, tested, and analyzed. Metabolic engineering processes are being used to develop high-rate bacterial fermentations and overproducing hybridoma cultures for producing chemical intermediates and monoclonal antibodies, respectively. Control theory of biological processes and an optical biosensor for metal detection are also being pursued. Projects in biomedical engineering involve the design of polymeric inhibitors of bacterial toxins and viruses, and the use of microfabrication tools to modulate the interaction of mammalian cells with their environment for applications in tissue engineering.

Separation Processes
The fundamentals of separating species, especially in dilute solutions, is the focus of ongoing experimental and theoretical research. Projects include the understanding of separation by membranes and the development of new membranes, adsorption and chromatographic separations for preparing laboratory quantities of unusual chemicals, and protein precipitation processes. Another major research program is the recycling of microelectronic etching solutions using membrane separation processes.

Molecular Simulations
Monte Carlo and molecular dynamics simulations are being used in combination with statistical mechanical theories to understand thermodynamics, structure, and kinetics of biomolecules in aqueous solutions. Special emphasis is placed on understanding and relating water structure near different solutes and in different environments to resulting interactions (e.g., hydrophilic and hydrophobic interactions). Molecular simulation techniques are also being applied to polymeric systems to understand penetrant solubility and diffusivity in polymers.

Polymers
A large polymer research program focuses on polymer reaction engineering including devolatilization and heat transfer. Current work emphasizes bulk polymerizations in tubular reactors and segregation phenomena in stirred tank reactors. Under study are ways of enhancing heat transfer to fluids in laminar flow and the application of polymer devolatilization technology to unconventional substances. The recovery
of commingled scrap plastics by selective dissolution is a major activity. Other active areas include structure-property relationships, rheology, extrusion, and a large interdisciplinary program on biocatalysis in polymer synthesis and modification.

High-Temperature Kinetics
The development of more efficient, less polluting, combustion systems, requires accurate chemical kinetic input data on individual reactions over large temperature ranges. Rensselaer is pioneering the development of experimental techniques for obtaining such data. This work includes design, construction, experimentation, and the generation of data for use by reaction system modelers. Both fast-flow thermal and pseudostatic photochemical systems are used. Various light sources, such as lasers, combined with electro-optical detection techniques are employed to determine the time history of reactants. Larger reactants and products are observed mass spectrometrically. Microcomputers are used for experimental control and data handling. In some work, the light-emitting and electrical-charge generation aspects of reactions are also investigated. In addition to combustion, this work is important to technological fields, such as semiconductor processing, metals refining, and optical fiber and carbon black manufacturing, as well as models of the atmosphere. A better understanding of the temperature dependence of reaction rate coefficients is a significant result of this work.

Advanced Materials
Research interests are centered on developing and understanding the phenomena involved in producing advanced materials for the optical, electronic, and allied industries. Thermodynamic, transport, and chemical processes governing the formation and subsequent behavior of these materials are under active investigation. Research areas include modeling and optimizing CVD-reactor-system designs for producing high-efficiency, epitaxial layers economically in an environmentally sound manner, and developing nonlinear and electro-optic inorganic and organic materials for switching and memory applications. Additional research areas are understanding phenomena involved in the production and use of microlens arrays, wave-guide lasers, and determining the composition, property, and structure relationships of crystalline and glassy materials.

Process Control and Design
A major focus of this research is the development of realistic, robust control strategies for multivariable chemical processes having parameter and process uncertainties. Such strategies are created to exploit the dynamic properties inherent in the systems. Integration of the modeling, design, and control of specialty chemical and pharmaceutical processes is of particular interest.

Interdepartmental Research
Several research areas involve participation and cooperation with other departments. Such areas include polymer studies with the Materials Science and Engineering and Chemistry Departments, fermentation and other biochemical research with the Biology Department, studies in fluid mechanics with the Mathematics Department, polymer membrane fabrication with the Chemistry Department, and research on lubrication and other interfacial phenomena with the Mechanical Engineering Department. Research into state-of-the-art design and optimization of CVD reactors for semiconductor production is conducted jointly with the Center for Integrated Electronics. Additional information on research in these areas is found in the catalog sections for those departments.

Research Related Facilities
The department maintains extensive research and instructional laboratories which house myriad special and unique equipment developed for specific studies, as well as extensive analytical and optical instrumentation, minicomputers, and microcomputers. Major instrumentation such as a GC/mass spectrome-
ter, an X-ray fluorescence analyzer, an ion chromatograph, HPLC systems, and a laser zee particle char-
acterization system make Rensselaer’s laboratories one of the most comprehensively equipped university
centers for research in the areas described above. The Howard Isermann Biochemical Engineering
Laboratory was established in the department exclusively for conducting biochemical engineering research.
The department research programs also use a number of major university facilities including the electron
optics laboratory and the polymer laboratories in the Materials Research Center.

Faculty*

Professors
Belfort, G.—Ph.D. (University of California, Irvine); membrane sorption and separations engineering,
bioacatalysis, biosensors, magnetic resonance flow imaging.
Bequette, B.W.—Ph.D. (University of Texas, Austin); chemical process modeling, control, and optimi-
zation; biomedical and drug infusion systems.
Bizios, R.—Ph.D. (Massachusetts Institute of Technology); cellular bioengineering, cell/biomaterial
interactions, biomaterials.
Cale, T.S.—Ph.D. (University of Houston); microelectronic materials processing and simulation.
Cramer, S.M.—Ph.D. (Yale University); biochemical engineering, chromatographic separations.
Dordick, J.S.—Ph.D. (Massachusetts Institute of Technology); biochemical engineering, enzyme tech-
nology, polymer chemistry, bioseparations.
Glicksman, M.E.—Ph.D. (Rensselaer Polytechnic Institute); transport phenomena of crystal growth.
Lahey, R.T., Jr.—Ph.D. (Stanford University); two-phase flow and boiling heat transfer.
Nauman, E.B.—Ph.D. (University of Leeds, England); reaction engineering, dispersion theory, lamin-
ar heat transfer.

Associate Professors
Plawsky, J.L.—Sc.D. (Massachusetts Institute of Technology); optical, nonlinear and electrooptic,
crystalline, and glassy materials.

Assistant Professors
Garde, S.S.—Ph.D. (University of Delaware); molecular simulation.
Kane, R.S.—Ph.D. (Massachusetts Institute of Technology); biomedical engineering, polymers, sur-
faces, nanomaterials.
Martin, L.L.—Ph.D. (University of California, Los Angelas) process systems engineering, design for
waste minimization and pollution prevention.
Sharfstein, S.T.—Ph.D. (University of California, Berkeley); biochemical engineering, mammalian
cell culture.

Distinguished Research Professors
Fontijn, A.—D.Sc. (University of Amsterdam, Netherlands); combustion, high-temperature kinetics,
gas phase reactions, atmospheric chemistry.
Gill, W.N.—PE. Ph.D. (Syracuse University); transient dispersion processes, reverse osmosis systems,
crystal growth phenomena, surface-tension-driven flow.
Wayner, P.C., Jr.—Ph.D. (Northwestern University); heat transfer, interfacial phenomena.

Adjunct Faculty
Belfort, M.—Ph.D. (University of California, Irvine); molecular biology.

* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2003 Board of Trustees meeting.
Emeritus Professors
Abbott, M.M.—Ph.D. (Rensselaer Polytechnic Institute); thermodynamics.
Altwicker, E.R.—Ph.D. (Ohio State University); air pollution control, atmospheric chemistry.
Bungay, H.R., III—P.E., Ph.D. (Syracuse University); water resources, biochemical engineering.
Chung, C.I.—Ph.D. (Rutgers University); polymer processing, polymer melt rheology, relaxation behavior in polymer solids.
Littman, H.—Ph.D. (Yale University); fluidization, fluid-particle systems.
Muckenfuss, C.—Ph.D. (University of Wisconsin); kinetic theory, transport phenomena.
Van Ness, H.C.—P.E., D.Eng. (Yale University); thermodynamics.

Undergraduate Programs

Objectives of the Undergraduate Curriculum
Graduates of the Howard P. Isermann Department of Chemical Engineering will:

■ Have a solid background in chemistry, mathematics, basic science and engineering science
■ Have technical knowledge of fundamental chemical engineering concepts of balance equations, thermodynamics, transport phenomena, chemical reaction engineering, separations processes, and process systems engineering
■ Be able to communicate technical material through written reports and oral presentations
■ Apply chemical engineering principles and economic analysis to the synthesis of chemical processes and products. These complex problems require teamwork, and the ability of individuals to serve as leaders and contributors
■ Be prepared equally for professional practice or further graduate study in chemical engineering and biological engineering.
■ As with all engineering disciplines, be informed citizens, broadly educated in the humanities and social sciences.

Students may achieve these objectives through completion of either the baccalaureate program leading to the B.S. degree or the professional program leading to the M.Eng. degree. Both programs are described in detail below.

Baccalaureate Programs
The chemical engineering program comprises a minimum of 37 courses, which include three free electives and three area electives: one in advanced chemistry, one in advanced chemical engineering, and one in a nonchemical engineering area. On completion of three years of the baccalaureate program, the student may continue to the fourth year or be admitted to the professional program. While individual variations may be made in the course sequence in consultation with a faculty adviser, all listed courses and elective credits in the curricula must be satisfactorily completed to qualify for the specified degrees. A program outline that indicates required courses and electives is provided below. The complete curriculum totals 128 credit hours.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1100 Intro. to Engineering Analysis</td>
<td>4</td>
<td>ENGR-1200 Eng. Graphics and CAD 1</td>
<td>.............</td>
</tr>
<tr>
<td>ENGR-1300 Engineering Processes 13</td>
<td>..................</td>
<td>ENGR-1600 Materials Science for Engineers</td>
<td>.............</td>
</tr>
<tr>
<td>CHEM-1300 Chemistry Principles for Engineers 4</td>
<td>.............</td>
<td>MATH-1020 Calculus II</td>
<td>..................</td>
</tr>
<tr>
<td>MATH-1010 Calculus I</td>
<td>4</td>
<td>PHYS-1100 Physics I</td>
<td>..................</td>
</tr>
</tbody>
</table>

1 These required courses may be taken in either order.
2 May be replaced by ENGR-1310.
Electives

As is evident in the above outline, the B.S. program includes several types of electives, three of which are specifically designated. These designated electives are subject to the following constraints:

- The chemistry elective must be in advanced chemistry or in an advanced chemistry-related subject. The Bioorganic Mechanisms and Molecular Biochemistry courses are particularly recommended.
- The chemical engineering elective must be in chemical engineering or in an approved, advanced chemical engineering subject.
- The engineering elective cannot be a chemical engineering course; it must be at least 2000-level and contain four credits of engineering topics.

The curriculum clearance officer, who maintains a list of appropriate courses, must approve selection of these three constrained electives. The three free electives are completely unconstrained.

Humanities and Social Sciences Electives

In this area, the electives are based on the Institute and School of Engineering requirements. Students are urged to elect humanities and social science sequences through which they will obtain adequate breadth and depth in subject areas. Students desiring minors in Humanities and Social Sciences must consult the school or department in which the courses are offered to obtain further information and specific requirements.

\footnote{Includes Professional Development I.}

\footnote{This course will be fulfilled from a list published at the start of each semester. It may be taken either semester in Year 3.}

\footnote{May be taken either semester in Year 4.}
Professional Program
Students who, at the end of their third year, apply and are accepted to this program will complete ten additional courses beyond the baccalaureate degree and will be awarded the M.Eng. degree. This program is described in detail below.

Graduate Programs
The Chemical Engineering Department offers the Master of Science, the Master of Engineering, and the Doctor of Philosophy degrees, each of which is tailored to fulfill the varying educational needs of its graduate students.

All graduate programs offer flexibility. Students are advised to plan programs that use course choices and electives to obtain in-depth studies in one or more subspecialties of their degree majors. Cross-disciplinary studies using courses offered by other departments or schools at Rensselaer are encouraged.

In addition, all graduate degree programs are arranged individually, and students are encouraged to use electives to conduct intensive studies in one or more subdisciplines or specialties. The M.S. and Ph.D. programs are particularly flexible. However, each student's program must include the following courses:

- CHME-6570 Chemical and Phase Equilibria (Fall)
- CHME-6610 Mathematical Methods in Chemical Engineering I (Fall)
- CHME-6510 Advanced Fluid Mechanics I (Spring)
- CHME-6640 Advanced Chemical Reactor Design (Spring)

Master’s Programs
The master’s degree represents an intermediate level of academic preparation. It is often the optimal degree for careers in engineering design.

Master of Science
The M.S., which requires a thesis, may be used for professional entry, but is also well suited to students who wish to measure their ability to get a Ph.D. without commitment of extra time beyond that required for an M.S. A special optional master’s program is available for this purpose.

For the M.S., 30 credits of graduate-level studies, including six credits for the thesis, are normally required. However, the thesis requirement may vary from three to nine hours at the discretion of the department. The 24 hours of approved course work must include at least 15 credits of 6000-level courses. A formal thesis defense is not required.

Students who wish to follow the optional master’s program should plan to take the Ph.D. comprehensive examination during their second semester of full-time graduate studies. The examination may be taken a maximum of two times. Passing students may register for an additional three credits of CHME-6990 Master’s Thesis, and formal course work requirements for the master’s degree are reduced to 21 hours. The student also has the option of proceeding directly toward a Ph.D. without completing the master’s thesis. This option will normally reduce the time required for a Ph.D. by about six months. Students who elect to proceed in this manner will receive an M.S. degree, with thesis requirements waived, after two years of satisfactory full-time study and acceptance of the dissertation proposal.

Master of Engineering
The M.Eng. degree involves formal course work only and does not require a thesis. This degree is awarded on completion of 30 credits of course work. For a student with an accredited B.S. degree in chemical engineering, the program includes the following:
Credit hours

CHME-6510 Advanced Fluid Mechanics I ... 3
CHME-6570 Chemical and Phase Equilibria .. 3
CHME-6640 Advanced Chemical Reactor Design .. 3
Electives .. 18

Of the electives, at least two must be chemical engineering courses, and at least two must be nonchemical engineering courses. A feature of this M.Eng. program is the opportunity to concentrate in one of the subspecialties of chemical engineering. These areas include (but are not limited to) bioseparations, environmental engineering, materials engineering, and polymer engineering.

Doctoral Programs

The Ph.D. degree represents the highest level of academic preparation. With it, a student can expect to maintain technical competence and contributions throughout a professional career. It is usually the preferred degree for research and development in industry and government and for teaching.

Within the Chemical Engineering Department, 90 credits of graduate-level studies, including the dissertation, are required for a Ph.D. The emphasis is on advanced study in a specialty with major focus on the dissertation. A doctoral student must pass a comprehensive examination, prepare a dissertation proposal and the dissertation itself, and present and defend the dissertation.

Course Descriptions

Courses directly related to all Chemical Engineering curricula are described in the Course Description section of this catalog under the department code CHME.

Civil and Environmental Engineering

Chair: George F List

Coordinator of Undergraduate Studies (Civil and Environmental Programs): Simeon Komisar

Coordinator of Graduate Studies (Civil Program): Jacob Fish

Coordinator of Graduate Studies (Environmental Program): James (Chip) Kilduff

Department Home Page: http://www.cee.rpi.edu

Civil and environmental engineers are responsible for providing the world’s constructed facilities and the infrastructure on which modern civilization depends. These facilities can be large and complex and require that the engineer be broadly trained and able to deal with the latest technologies.

Civil and environmental engineers focus on the analysis, design, construction, maintenance, and operation of large-scale physical systems. To ensure the proper construction and care of these complex systems and environments, Rensselaer civil and environmental engineers develop a full range of skills in design, analysis, fabrication, communication, management, and teamwork. The current rebuilding of the world’s roads, bridges, water and sewer systems, and other physical facilities has heightened society’s awareness of the profession and given it significant prominence. The growing panoply of sensors, instrumentation, intelligent facilities, and new materials is also highlighting the high-tech character of the discipline, creating new educational challenges and redefining the skill set that civil and environmental engineers need to succeed.
At Rensselaer, civil engineering has a long and distinguished history. In 1835, the Institute became the first U.S. school to issue a civil engineering degree. Among its graduates are William Gurley (1839) and Lewis E. Gurley (1845) partners in W&LE Gurley, Troy, N.Y., one of the first manufacturers of precision surveying instruments. Other world-renowned Rensselaer civil engineering graduates include:

- Francis Collingwood, Jr. (1855), honored by civil engineering’s Collingwood Prize
- Washington Roebling (1857), builder of the Brooklyn Bridge
- Seijiro Hirai (1878), a president of the Imperial Railways, Japan
- George Ferris (1881), designer of the Ferris wheel
- Milton Brumer (1923), construction manager for the Verrazano Narrows Bridge
- Werner Ammann (1928), former partner, Ammann and Whitney
- Clay Bedford, Sr. (1925), general supervisor of the construction of the Bonneville and Grand Coulee Dams
- Ralph Peck (1934), co-author with Karl Terzaghi of the internationally-known book *Soil Mechanics in Engineering Practice*

Today, Rensselaer civil and environmental engineers continue to be found at all levels in both private and public sectors throughout the world.

A long-standing tradition at Rensselaer is educational programs in environmental problem solving. An early contribution to this field was the water analysis work of William Pitt Mason (1874), the pioneer of such activities in the U.S. in the late 1800s. Edward J. Kilcawley, a Rensselaer civil engineering professor who introduced environmental engineering as an option in the mid-1940s and as degree program in the mid-1950s, contributed visionary environmental engineering concepts.

In addition to those in the Department of Civil and Environmental Engineering, there are faculty members with teaching and research interests in environmental problem solving in the Department of Chemical Engineering. The same is true in Departments of Biology, Chemistry, Earth and Environmental Sciences, and Mathematical Sciences, all of which fall within Rensselaer’s School of Science.

Research and Innovation Initiatives

Earthquake Engineering (Civil)

Rensselaer’s earthquake engineering research program is concerned with seismic analysis and design methodologies that mitigate the negative impact of earthquakes on buildings, bridges, and pipelines (water, sewer, gas, and oil). It also focuses on analytical relationships that support decision-making and advance the state of the art in design codes, a key to future sustainability and durability. In these areas, Rensselaer’s earthquake engineering research is among the best in the world. The Institute has a major geotechnical centrifuge facility and is in the process of building a medium-scale shaker table. The geotechnical centrifuge facility, fourth largest in the U.S. and among the twenty largest in the world, brings significant pre-eminence to the Institute. Rensselaer was recently selected as one of ten sites that will receive long-term NSF support as part of the Network for Earthquake Engineering Simulation initiative. Of major import in future research will be model-based simulation (using the centrifuge to extend existing simulation models and create new multiscale models), Web-based teleobservation and teleobservation (especially of a new robotic arm being built in collaboration with faculty from Mechanical, Aerospace, and Nuclear Engineering), and wireless sensors, using MEMs and other microelectronic devices (e.g., to unobtrusive-ly instrument experimental specimens).
Structural Engineering (Civil)
Design and analysis of bridges, buildings, and other large-scale facilities; material selection and specification; structural technology selection; dynamic and static structural modeling and analysis; environmental loads on structures.

Geotechnical Engineering (Civil)
Behavior of soils and foundations under cyclic and dynamic loads; design methods to accommodate natural and man-made vibrations; geostochastics; soil dynamics, stability of earth slopes, structures, and dams.

Transportation Engineering (Civil)
This area of research includes design, analysis, maintenance, and operation of transportation systems and facilities; intelligent transportation systems, especially highway networks, goods distribution systems, and transit systems; real-time, multiobjective network management and control, including route guidance and dynamic traffic assignment; signal control systems; network management strategies; multiobjective routing and scheduling; and logistics decision making under uncertainty.

Computational Mechanics (Civil)
Studies involve the development of automated finite element modeling techniques, adaptive analysis procedures, development of adaptive multiscale solution techniques, qualification and modeling of engineering idealizations for analysis and design, design systems using knowledge-base techniques, prototype systems for applications including discrete crack propagation, forging simulations, multiple-scale modeling of composite materials and electronic packages, and unsteady aerodynamics.

Infrastructure Engineering (Civil)
Under development are analytical methodologies and software tools for preservation, restoration, and renewal of large distributed systems such as roadways, bridges, pipelines, power distribution networks, and bridge and pavement management systems. Additional studies include remote sensing condition assessment, deterioration modeling and performance prediction, vulnerability assessment, risk analysis, reliability-centered maintenance, and capital investment planning.

Pollutant Fate and Transport (Environmental)
Research areas are conservative, semi-Lagrangian models of fate and transport in fluvial system, using scalable parallel algorithms for computation, probabilistic analysis of pollutant spills, influence of transient storage zones on fluvial fate and transport predictions, assessment of pathogen loading and transport in water supplies and treatment systems, fate of hydrophobic organics in sediment, environmental chemistry of PAHs.

Water Treatment (Environmental)
Researchers investigate the influence of natural organic matter properties and water chemistry on the formation of disinfection byproducts, understanding fouling mechanisms in the use of membrane processes in water treatment, membrane modifications for water treatment, adsorption processes and hybrid processes for removal of DBP precursors.

Waste Treatment (Environmental)
Studies focus on aerobic and anaerobic biological treatment reactors for municipal and industrial wastes; high strength anaerobic waste treatment in fluidized bed bioreactors with energy recovery, nutrient removal systems, hazardous waste treatment reactors, biofilters.
Site Remediation and Bioremediation (Environmental)
Research areas include combined advanced oxidation and biological treatment for sediment and soil slurry systems, in-situ degradation of chlorinated organics in groundwater, and solid phase treatment reactors for soils, slurries, and municipal solid wastes.

Environmental Systems (Environmental)
Under investigation are genetic algorithms for model calibration and optimization in environmental engineering, adaptive optimal control of treatment reactors, molecular modeling in environmental chemistry, and structure activity relationships

Research Facilities
Rensselaer’s centrifuge was commissioned in 1989 and began conducting physical model simulations of soil and soil structure systems subjected to in-flight earthquake shaking in 1991. In over a decade of successful operation, the facility has published results of some 360 earthquake-related model simulations, served as the basis for 12 Ph.D. theses at Rensselaer (10 Ph.D. theses in the last five years), and contributed to Institute faculty and student research as well as that of dozens of visiting scholars and outside users from the U.S., Asia, Europe, and Latin America. It has also provided data and research results to many people and organizations around the world. This centrifuge earthquake research has been conducted with two existing one-dimensional in-flight shakers, which can accommodate 90 kg and 400 kg payloads respectively.

The next-generation earthquake engineering capability for the Rensselaer centrifuge includes 1) a 2-D in-flight earthquake shaker (two prototype horizontal components) and associated 2-D laminar box container to allow for more realistic 2-D modeling; 2) a four degrees of freedom (4-D) robot capable of performing in-flight operations such as construction and excavation, pile driving, ground remediation, cone penetration, and static and cyclic loading tests without stopping the centrifuge; 3) a networked data acquisition system with Internet teleobservation/teleoperation capability, to be linked to the high-speed Rensselaer gigabit Ethernet backbone; 4) two high-speed cameras and image processing software; 5) development of a new generation of advanced and improved sensors capable of providing a better resolution of the measured model response; and 6) other equipment aimed at increasing the capability of the centrifuge to test a greater number and wider variety of earthquake engineering models.

A major upgrade in lab equipment and space for environmental engineering research and teaching has occurred through the establishment of the Keck Water Quality Laboratory, the National Science Foundation Environmental Colloid and Particle Laboratory, and the refurbishment of the Environmental Engineering Teaching Laboratory suite. Analytical equipment in these labs provides the capability for analysis and investigation of a wide variety of industrial processes, treatment processes, and polluted environments. This equipment gives students experience and expertise in treatability and toxicity studies, design and operation of bench-scale treatment systems, and investigation of a wide range of environmental quality parameters. The fate of specific compounds in the environment and in treatment processes can be analyzed by UV-VIS spectrophotometry, high pressure liquid chromatography, gas-liquid and gas chromatography with a number of specific and sensitive detectors, including electron capture, flame ionization, thermal conductivity, and mass spectral. Metals analyses by atomic absorption spectrophotometry and elemental analyses are also available. A complete suite of water quality monitoring equipment, field sampling systems, and geographical information system tools are available. Computational capabilities are widely accessible not only throughout the campus, but also in research laboratories, as well.
Faculty*

Professors

Clesceri, N.L.—Ph.D. (University of Wisconsin); advanced waste treatment, environmentally sound manufacturing, sediment decontamination.

Dobry, R.—Sc.D. (Massachusetts Institute of Technology); geotechnical engineering, soil dynamics, earthquake engineering, seismic analysis.

Dvorak, G.J.—Ph.D. (Brown University); mechanics of solids, composite materials and structures, fracture and fatigue.

Feeser, L.J.—PE, Ph.D. (Carnegie Mellon University); structures, computer applications and computer-aided design, structural optimization.

Fish, J.—Ph.D. (Northwestern University); computational mechanics, finite element methods, micromechanics, mathematical modeling.

Grivas, D.A.—Ph.D. (Purdue University); infrastructure engineering and management, nondestructive evaluation, mathematical morphology, image analysis, probabilistic modeling, risk analysis, reliability centered maintenance, mobility engineering.

List, G.F.—PE, Ph.D. (University of Pennsylvania); intelligent transportation systems, sensors, instrumentation and control, multiobjective.

O’Rourke, M.J.—PE, Ph.D. (Northwestern University); structures, lifeline earthquake engineering, snow loading on structures.

Shephard, M.S.—Ph.D. (Cornell University); computational mechanics, parallel processing, adaptive finite element techniques, automatic mesh generation.

Wallace, W.A.—Ph.D. (Rensselaer Polytechnic Institute); decision support systems, the process of modeling, environmental management, disaster management.

Zimmie, T.F.—PE, Ph.D. (University of Connecticut); geoenvironmental engineering, geotechnical engineering, groundwater hydrology, flow through porous media, landfills, centrifuge modeling, geosynthetics.

Associate Professors

Holguín-Veras, J.—PE, Ph.D. (The University of Texas at Austin); intelligent transportation networks, intermodal transportation, transportation planning and modeling, transportation economics.

Kilduff, J.—Ph.D. (University of Michigan); physicochemical processes, separations and recovery processes in water and wastewater treatment, effects of adsorption and mass-transfer on pollutant fate and transport in natural systems, membrane processes for water quality control.

Symans, M.—Ph.D. (State University of New York at Buffalo); structural dynamics, earthquake engineering, seismic isolation and energy dissipation systems, structural vibration control.

Assistant Professors

Nyman, M.C.—Ph.D. (Purdue University); fate and transport of hydrophobic organic contaminants in natural systems, environmental chemistry.

Zeghal, M.—Ph.D. (Princeton University); soil dynamics and geotechnical earthquake engineering, computational geomechanics, geotechnical system identification and seismic response monitoring, damage diagnosis and nondestructive evaluation, and seismic risk analyses.

* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2003 Board of Trustees meeting.
Research Assistant Professor
Abdoun, T.—Ph.D. (Rensselaer Polytechnic Institute); geotechnical engineering.

Clinical Associate Professor
Komisar, S.J.—Ph.D. (University of Washington); wastewater treatment, biological processes.

Adjunct Faculty (Civil Program)
Dall, J.—M.S. (Rensselaer Polytechnic Institute); structural engineering.
Dunn, R.H.P.—M.S. (Rensselaer Polytechnic Institute); geotechnical engineering.
Floess, C.—Ph.D. (Rensselaer Polytechnic Institute); geotechnical engineering.
Kenneally, D.—B.S. (Rensselaer Polytechnic Institute); highway engineering.
O’Malley, D.—M.S. (Central Missouri State University); traffic engineering.
Griggs, F.—D.E. (Rensselaer Polytechnic Institute); structural engineering.
Reilly, J.—Ph.D. (Rensselaer Polytechnic Institute); transportation systems.

Adjunct Faculty (Environmental Program)
Hetling, L.—PE., Ph.D. (Rensselaer Polytechnic Institute) water resources.
Young, K.—J.D. (Harvard Law School) environmental law.

Undergraduate Programs
Civil Engineering Curriculum

Objectives of the Undergraduate Curriculum
While certain objectives of an undergraduate education in engineering are common to all programs, there are subtle but important differences that require some subset of objectives specific to ensuring that all graduates have specialized technical knowledge in their chosen field. In this regard, the Department of Civil and Environmental Engineering Department’s baccalaureate program in Civil Engineering will:

■ Prepare students to be involved, global citizens with a broad appreciation of the key civil engineering issues and challenges of the 21st Century
■ Provide students with the technical background needed for the practice of civil engineering and to ensure their competence and literacy in both problem identification and problem solving, including design.
■ Prepare students for leadership in the profession, including civil engineering practice, societal activities, research, licensing, and ethics.
■ Provide students with a broad educational base, including a foundation in math, science, and engineering and exposure to the humanities and social sciences that prepares them for life-long learning
■ Prepare students to thrive in the modern workplace and the public forums of civil engineering practice through the development of leadership, teamwork, and communication skills

After completing the core engineering sequence, a student enters this curriculum and follows a baccalaureate program leading to the B.S. degree or a professional program leading to the M.Eng. degree as well as the B.S.

Undergraduate concentrations include construction, environmental, geotechnical, structural, and transportation engineering. Following the sample four-year schedule is the recommended collection of courses for each of these concentrations.
Subject to other requirements, students may use core engineering electives to accelerate their entrance into the program. Students also may take courses in related fields. Courses bearing the following codes are suggested for particular consideration in consultation with the student's adviser: ARCH, ECSE, MANE, ENVE, MATH, CSCI, ERTH, and DSES.

The following represents a typical four-year civil engineering program. Students who are convinced that they want to become civil engineers are urged to follow this plan of study in lieu of the general core engineering program presented earlier. Required or strongly recommended core engineering electives are shown for optimum scheduling.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1100</td>
<td>Intro. to Engineering Analysis</td>
<td>ENGR-1300</td>
<td>Engineering Processes 1</td>
</tr>
<tr>
<td>MATH-1010</td>
<td>Calculus I</td>
<td>PHYS-1100</td>
<td>Physics I</td>
</tr>
<tr>
<td>CHEM-1300</td>
<td>Chemical Principals for Engineers</td>
<td>MATH-1020</td>
<td>Calculus II</td>
</tr>
<tr>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
<td>Science Elective 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2050</td>
<td>Intro. to Engineering Design</td>
<td>ENGR-2090</td>
<td>Engineering Dynamics</td>
</tr>
<tr>
<td>MATH-2400</td>
<td>Intro. to Differential Equations</td>
<td>ENGR-2530</td>
<td>Strength of Materials</td>
</tr>
<tr>
<td>PHYS-1200</td>
<td>Physics II</td>
<td></td>
<td>Multidisciplinary Elective I 3</td>
</tr>
<tr>
<td>ENGR-1200</td>
<td>Eng. Graphics and CAD 1</td>
<td>Multidisciplinary Elective II 3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td>Professional Development II 4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Math and Science Elective</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL-2030</td>
<td>Intro. to Transportation Eng.</td>
<td></td>
<td>Multidisciplinary Elective II 1</td>
</tr>
<tr>
<td>CIVL-2630</td>
<td>Intro. to Geotechnical Eng.</td>
<td>CE Design Elective 5 1</td>
<td>3</td>
</tr>
<tr>
<td>CIVL-2670</td>
<td>Intro. to Structural Eng.</td>
<td>Professional Development II 6</td>
<td>2</td>
</tr>
<tr>
<td>ENGR-2600</td>
<td>Modeling and Analysis of Uncertainty</td>
<td>Math and Science Elective</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE-2110</td>
<td>Intro. to Environ. Eng.</td>
<td>CIVL-4920</td>
<td>Civil Eng. Capstone Design</td>
</tr>
<tr>
<td>CIVL-4120</td>
<td>CE Instrumentation and Sensors</td>
<td>ENGR-4010</td>
<td>Professional Development III 7</td>
</tr>
<tr>
<td></td>
<td>CE Design Elective 1</td>
<td></td>
<td>CE Technical Elective 1</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free Elective</td>
</tr>
</tbody>
</table>

1 For these two courses, order does not matter.

2 Choose either ENGR-1600 or CSCI-1100.

3 For Multidisciplinary Elective I, choose either ENGR-2250 or ENGR-4750. For Multidisciplinary Elective II, choose either ENGR-2350 or ENGR-4300.

4 Can be satisfied with Computer Science I.

5 Text below lists the allowable courses.

6 This course will be fulfilled from a list published at the start of each semester.

7 Can be taken either semester of the senior year.
A minimum of 128 credit hours is required for this curriculum. Nonengineering courses graded satisfactory/unsatisfactory are not included within this 128-credit-hour requirement. The Pass/No Credit option can be used only for free electives with something other than a CIVL or ENVE code and the humanities and social sciences electives. All other courses used to satisfy the degree requirements must be taken on a graded basis.

Civil Engineering Design Electives and Concentrations

Six credit hours of civil engineering design electives are required. These must be selected from the following list. Any pair of courses can be selected providing that prerequisites are met, but students most often select a combination focused on a specific area of concentration. The terms in which courses are offered are listed in parentheses.

Construction Engineering
- CIVL-4070 Steel Design (Fall)
- CIVL-4080 Concrete Design (Spring)
- CIVL-4010 Foundation Engineering (Fall)
- CIVL-4150 Experimental Soil Mechanics (Spring)

Structural Engineering
- CIVL-4070 Steel Design (Fall)
- CIVL-4080 Concrete Design (Spring)
- CIVL-4960 Bridge Design (Spring) *Special topics course.*

Environmental Engineering
- ENVE-4200 Solid and Hazardous Waste Engineering
- ENVE-4350 Biological Processes in Environmental Engineering

Civil Engineering Technical Elective
Any of the design electives listed above can be taken as a CE technical elective, provided the necessary prerequisites are met. The following other civil engineering courses can also be selected:

- CIVL-2040 Professional Practice
- CIVL-2130 Surveying
- CIVL-4240 Intro. to Finite Elements
- CIVL-4270 Construction Management
- CIVL-4440 Structural Analysis
- CIVL-4580 Infrastructure Engineering

With adviser approval, courses from related disciplines can also be taken. These include architecture, environmental engineering, mechanical engineering, chemical engineering, industrial engineering, and operations research. Graduate level courses (6000-level) are allowable under certain circumstances. A representative list of such courses is as follows:

- ARCH-4510 Construction Industry Seminar
- ARCH-4530 Systems Building Seminar
- ARCH-4550 Building Economics
- ARCH-4750 Advanced Environmental Systems Management
- ENGR-4750 Engineering Economics and Project Management
- ENVE-4110 Aqueous Geochemistry
- ENVE-4200 Solid and Hazardous Waste Engineering
- ENVE-4310 Applied Hydrology and Hydraulics
- ENVE-4340 Physicochemical Processes in Environmental Engineering
- ENVE-4350 Biological Processes in Environmental Engineering
- ENVE-4310 Applied Hydrology and Hydraulics
- MATH-4800 Numerical Computing
- ERTH-2120 Structural Geology
- ERTH-2330 Earth Materials
- ERTH-4200 Surficial Geology
- ERTH-4710 Ground Water Hydrology

Special topics course.
Humanities or Social Sciences Electives
In this area, the electives are based on the Institute and School of Engineering requirements. Students are urged to elect humanities and social science sequences through which they will obtain adequate breadth and depth in subject areas. Students desiring minors in Humanities and Social Sciences must consult the school or department in which the courses are offered to obtain further information and specific requirements.

Environmental Engineering Curriculum

Objectives of the Undergraduate Curriculum
While certain objectives of an undergraduate education in engineering are common to all programs, there are subtle but important differences that require some subset of objectives specific to ensuring that all graduates have specialized technical knowledge in their chosen field. In this regard, the Civil and Environmental Engineering Department’s baccalaureate program in Environmental Engineering will:

■ Prepare students to be involved global citizens with a broad appreciation of the key environmental issues and challenges of the 21st Century
■ Provide students with a broad educational base, including a foundation in math, science, and engineering and exposure to the humanities and social sciences that will prepare them for life-long learning
■ Provide students with the technical background needed for the practice of environmental engineering and to insure their competence and literacy in both problem identification and solving, including design.
■ Prepare students for professional engineering practice, including professional licensing, with awareness of the importance of personal and professional ethics
■ Prepare students to thrive in the modern workplace and the public forums of environmental engineering practice through the development of leadership, teamwork, and communication skills

The Rensselaer bachelor’s program in environmental engineering builds upon a broad base of studies in chemistry, life sciences, and engineering sciences culminating in a uniquely structured course sequence. This sequence of courses, as shown below, is designed around the unit operations and transport processes concepts, together with integrated laboratory theory courses. It culminates in senior design courses. This structure presents a unified educational experience in environmental engineering. A minimum of 128 credit hours is required for this curriculum.

First Year

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1100 Intro. to Engineering Analysis4</td>
<td>PHYS-1100 Physics I4</td>
</tr>
<tr>
<td>MATH-1010 Calculus I4</td>
<td>MATH-1020 Calculus II4</td>
</tr>
<tr>
<td>CHEM-1300 Chemistry Principles for Engineers4</td>
<td>ENGR-1600 Material Science for Engineers4</td>
</tr>
<tr>
<td>ENGR-1200 Engineering Graphics and CAD 1......1</td>
<td>ENGR-1300 Engineering Processes or</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective4</td>
<td>Intro. to Eng. Electronics 1 ..1</td>
</tr>
<tr>
<td></td>
<td>Hum. or Soc. Sci. Elective4</td>
</tr>
</tbody>
</table>

1 May be taken in any order in the first two semesters.
Concentrations
In consultation with the program adviser, students may choose from four areas of concentration, emphasizing water quality control, air resources, environmental systems, and solid and hazardous wastes.

Minor Programs
The department offers minors in both civil and environmental engineering.

Civil Engineering
Students not majoring in civil engineering may receive a minor in this field by completing 15 credit hours selected from the following list (subject to consultation with a department program adviser):

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS-1200</td>
<td></td>
<td>ENGR-2600</td>
<td>Modeling and Analysis of</td>
</tr>
<tr>
<td>MATH-2400</td>
<td></td>
<td></td>
<td>Uncertainty</td>
</tr>
<tr>
<td>ENVE-2110</td>
<td></td>
<td>ENGR-2050</td>
<td>Intro. to Engineering Design</td>
</tr>
<tr>
<td>CHEM-2270</td>
<td></td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CSCI-1190</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beginning C Programming for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Engineers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHME-4010</td>
<td></td>
<td>ENGR-4310</td>
<td>Applied Hydrology and Hydraulics</td>
</tr>
<tr>
<td>ENVE-4330</td>
<td></td>
<td></td>
<td>Technical Elective I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Environmental Geodynamics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Environmental Geology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chem. Process Dyn. and Control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE-4350</td>
<td></td>
<td>ENVE-4340</td>
<td>Physicochem. Proc. in Env. Eng</td>
</tr>
<tr>
<td>ENVE-4150</td>
<td></td>
<td>ENVE-4160</td>
<td>Environmental Eng. Lab II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical Elective II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Env. Proc. Design II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free Elective III</td>
</tr>
</tbody>
</table>

Concentrations
In consultation with the program adviser, students may choose from four areas of concentration, emphasizing water quality control, air resources, environmental systems, and solid and hazardous wastes.

Minor Programs
The department offers minors in both civil and environmental engineering.

Civil Engineering
Students not majoring in civil engineering may receive a minor in this field by completing 15 credit hours selected from the following list (subject to consultation with a department program adviser):

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS-1200</td>
<td></td>
<td>ENGR-2600</td>
<td>Modeling and Analysis of</td>
</tr>
<tr>
<td>MATH-2400</td>
<td></td>
<td></td>
<td>Uncertainty</td>
</tr>
<tr>
<td>ENVE-2110</td>
<td></td>
<td>ENGR-2050</td>
<td>Intro. to Engineering Design</td>
</tr>
<tr>
<td>CHEM-2270</td>
<td></td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CSCI-1190</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beginning C Programming for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Engineers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHME-4010</td>
<td></td>
<td>ENGR-4310</td>
<td>Applied Hydrology and Hydraulics</td>
</tr>
<tr>
<td>ENVE-4330</td>
<td></td>
<td></td>
<td>Technical Elective I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Environmental Geodynamics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Environmental Geology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chem. Process Dyn. and Control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVE-4350</td>
<td></td>
<td>ENVE-4340</td>
<td>Physicochem. Proc. in Env. Eng</td>
</tr>
<tr>
<td>ENVE-4150</td>
<td></td>
<td>ENVE-4160</td>
<td>Environmental Eng. Lab II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical Elective II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Env. Proc. Design II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free Elective III</td>
</tr>
</tbody>
</table>

1 May be taken in any order in the first two semesters.

2 Special section for environmental engineering students.

3 Elective must be an engineering course with design content (e.g., ENVE-4200, ENVE-4240, ENVE-4210, ENVE-4110). Courses are selected in consultation with the program adviser.

4 Multidisciplinary engineering elective: Must be an engineering course (e.g., ENGR-4750, ENGR-4760, CIVL-2030, CIVL-2630, DSES-4260, ENGR-2530, ENGR-2830).

5 This course will be fulfilled from a published list at the start of each semester and can be taken either semester.
Students pursing this minor must satisfy the prerequisites and/or corequisites for these courses, which may involve other course work. Courses in mechanics and structures taught by the School of Architecture may be substituted for certain core engineering, mathematics, and mechanics/materials courses (with instructor approval).

Environmental Engineering

Students not majoring in environmental engineering may receive a minor in this discipline by completing 15–16 credit hours of study beyond the Introduction to Environmental Engineering course. Typically these courses are chosen in consultation with the environmental engineering program adviser but may include:

- ENVE-4260 Biological Processes in Environmental Engineering
- ENVE-4340 Physicochemical Process in Environmental Engineering
- ENVE-4310 Applied Hydrology and Hydraulics

And one or more of:
- ENVE-4200 Solid and Hazardous Waste
- ENVE-4330 Atmospheric Pollution
- ENVE-4320 Environmental Chemodynamics

Professional Program

This program is intended primarily as a preparation for professional practice. After core engineering study, qualified undergraduates may enter this program, which leads to the B.S. and the M.Eng. degrees. Students follow a coherent program integrating advanced undergraduate and graduate study. An additional 30 credit hours are required beyond the B.S. degree.

Graduate Programs

Graduate programs leading to the M.Eng., M.S., D.Eng., and Ph.D. are available in both curricula. The selection of a graduate program and degree is based on student interest, area of graduate concentration, and satisfaction of prerequisites as indicated below.

Master’s Programs

Master of Science

This research degree is open to students with undergraduate degrees in engineering or the physical or natural sciences. In addition to the satisfactory completion of an approved set of advanced courses, candidates for this degree must complete a six-credit thesis.

In the civil engineering discipline, this thesis must provide documentation of an independent research-related effort and be approved by the student’s faculty adviser. Listed below are recommended core courses in each of the five civil engineering areas of concentration. M.S. candidates typically take all the courses listed below in their chosen area of concentration.

Computational Mechanics

- CIVL-6170 Mechanics of Solids
- CIVL-6660 Fundamentals of Finite Elements
- CIVL-6670 Nonlinear Finite Element Methods
- CIVL-6680 Finite Element Programming

Geotechnical/Earthquake Engineering

- CIVL-6510 Advanced Soil Mechanics
- CIVL-6520 Advanced Foundations of Earth Structures
- CIVL-6550 Advanced Geoenvironmental Engineering
- CIVL-6450 Structural Dynamics

Structural/Earthquake Engineering

- CIVL-6450 Dynamics of Soil and Soil Foundation Systems
- CIVL-6540 Dynamics of Soil and Sand Systems

- CIVL-6420 Introduction to Finite Elements
- CIVL-6200 Plates and Shells
- CIVL-6210 Structural Stability
- CIVL-6310 Advanced Concrete Structures
- CIVL-6320 Advanced Steel Design
- CIVL-6450 Structural Dynamics
- CIVL-6540 Dynamics of Soil and Soil Foundation Systems
M.S. candidates in the environmental engineering discipline must also provide documentation of an independent research-related effort. In addition to approval of this written work, they are also required to give an oral presentation of the thesis work.

Master of Engineering
This is a 30-credit structured program of advanced professional study aimed at preparing students for professional practice. Except for computational mechanics, candidates for this degree in the civil engineering discipline must have an accredited bachelor’s degree in engineering. In environmental engineering, a B.S. in the physical or natural sciences is also acceptable. There is no project or thesis requirement, but students may elect to do one, at either the three- or six-credit level, in consultation with their advisers.

Doctoral Programs
Advanced study and research are conducted under the guidance of an adviser. Usually 45 to 60 course credits beyond the bachelor’s degree are required in addition to the residence and thesis requirements. Each doctoral candidate must have at least 90 credits (course work plus thesis/project) beyond the bachelor’s degree. Environmental candidates are required to submit a draft of a journal article prior to graduation.

Doctor of Philosophy
This is a research-oriented degree focused on the development of new knowledge in the student’s chosen area of study. It includes the preparation of a dissertation that carefully documents the original contribution of the student’s research. The dissertation can represent up to 30 credits of the student’s approved plan of study. In addition to the examination processes required of all Rensselaer doctoral students, civil engineering and environmental students working toward this degree must pass a preliminary examination during their first year of doctoral study.

Environmental engineering students must also take a candidacy examination within two semesters after passing the preliminary examination. This is an oral examination based on a thesis proposal submitted by the student at least two weeks prior to the examination. The student’s thesis committee will administer the candidacy examination.

Doctor of Engineering
This is a specialized program aimed at advanced engineering problem solving. The degree includes the preparation of a dissertation that poses a significant engineering problem and develops a solution. The dissertation for this degree can also represent up to 30 credits of the student’s approved plan of study. The examination requirements for both disciplines are the same as those noted under the Doctor of Philosophy.

Course Descriptions
Courses directly related to all Civil and Environmental Engineering curricula are described in the Course Description section of this catalog under the department codes CIVL and ENVE.
Decision Sciences and Engineering Systems

Chair: James M. Tien

Associate Chair and Director, Master's Programs: Charles J. Malmborg

Director, Doctoral Program: Sunderesh Heragu

Department Home Page: http://www.rpi.edu/dept/dses/www/

The formation of the Decision Sciences and Engineering Department in 1987 is a prime example of Rensselaer's ability to anticipate the changing needs of the engineering profession. The department was created to (1) prepare engineers to design, develop, and implement complex systems and (2) to conduct research that leads to better understanding of how information technology and quantitative analysis and modeling can support individuals, groups, and systems in problem solving and decision making. DSES achieves these objectives by extending and integrating knowledge from the disciplines of industrial engineering, information systems, operations research, mathematical statistics, computational intelligence, bioinformatics, and systems engineering.

The Department of Decision Sciences and Engineering Systems offers programs in industrial and management engineering, manufacturing systems engineering, and operations research and statistics. Curricula in management engineering and/or industrial engineering have been offered since 1933. The interdisciplinary graduate program in operations research and statistics (OR&S) at Rensselaer was established in response to the rapid increase in the use of mathematical models for characterizing systems, understanding operations, and making decisions. Both a master's and a doctoral program were initiated in 1967. However, in 1988, the department replaced the OR&S Ph.D. with a unique Ph.D. degree in Decision Sciences and Engineering Systems, reflecting the focus of the new department. The program in Manufacturing Systems Engineering was inaugurated in the fall of 1992. This program is designed to emphasize modeling, statistical, computer, and management skills as they relate to the process of manufacturing. A common theme throughout these programs is the use of mathematical, statistical, and computational/simulation models to better understand engineering, managerial, operational, and physical processes.

Research and Innovation Initiatives

Manufacturing Systems
Faculty have developed methodologies and procedures for infrastructure and operating systems (e.g., production planning and control, scheduling, and dispatching in flexible manufacturing systems), simulation of production facilities, manufacturing logistics, materials handling engineering, manufacturing facility design, information integration for design and manufacturing, control systems and agile manufacturing concepts for the electronics industry, and methodologies to integrate statistical quality control with computer graphics.

Service Systems
This area concentrates on the application of traditional and evolving industrial and systems engineering methodologies to the design and operation of service systems in both industry and the public sector. Areas of interest include simulation modeling and analysis, distribution and logistics, facilities design, work design, quality assurance, intelligent transportation systems, and engineering economic analysis. Also included is research in the deployment, allocation, and operation of urban service systems using computationally-intensive, real-time decision support approaches.
Information Systems
Information and decision support systems have been developed and extensively used for disaster preparedness and management of disasters (e.g., searches for ships lost at sea, earthquakes) and manufacturing enterprises (e.g., manufacturing-driven design and scalable adaptive integration of databases over wide area networks). New theory and methodologies for Internet-based information integration, e-commerce, data mining, and knowledge discovery are being developed. Decision support systems are being developed using a variety of knowledge engineering and computational intelligence tools. Also under development are methods, models, and technologies to aid in the planning and design of distributed information systems, information visualization, and user interfaces.

Mathematical Programming
Research topics include linear, nonlinear, integer, large-scale, multiple-objective, combinatorial, geometric, and stochastic programming. Of particular interest is research on the development and analysis of algorithms, computation, and the integration of uncertainty in optimization.

Statistics and Applied Probability
Research is conducted in the areas of real-time data fusion and analysis, data mining, knowledge discovery, and design of experiments—including optimality, efficiency, and robustness; nonlinear and robust estimation; statistical computing; probability; stochastic processes; queuing theory; reliability; quality control; and forecasting.

Facilitating these research programs are three research centers based directly within the Decision Sciences and Engineering Systems Department. Every department faculty member is involved in one or more of these research centers. In addition, several other faculty in the School of the Engineering, as well as in the other four schools, are also participating in activities conducted in the centers described below:

Electronics Agile Manufacturing Research Institute (EAMRI)
The EAMRI grew out of a federally funded, five-year project focused on agile manufacturing information technologies as a strategy to help the electronics manufacturing industry achieve its goals. Agile manufacturing concepts employ network-based information for supply chain-oriented technologies and organizations, as well as improved communications to help solve design and manufacturing problems. The EAMRI provides a national focus for developing and sharing methods to enable the U.S. electronics industry to adopt agile manufacturing. Experts in electronics design and manufacturing, the EAMRI faculty possess engineering, computer science, and management backgrounds. The EAMRI’s initial information technology, known as the Virtual Design Environment, has recently received a patent from the U.S. Patent Office.

Center for Services Research and Education (CSRE)
The goal of the CSRE is to enhance our understanding of the service sector and its function, and to educate students and managers seeking careers in the services industry, which accounts for more than three-quarters of the U.S. gross national product. CSRE faculty were one of the first groups to highlight the duality between services and manufacturing; many manufacturing methods are applicable to service systems and can be employed to enhance productivity and competitiveness. The CSRE takes a holistic approach to the multifaceted service sector and brings together experts from engineering, marketing, psychology, economics, and management policy and organization, among others. Experts examine the common elements that characterize all aspects of the service sector and develop generic principles that apply across the wide spectrum of services, including the advancement of a focus in service systems engineering.
Rensselaer Statistical Consulting Center (RSCC)
The RSCC provides statistical planning and analysis services to Rensselaer researchers who require them. It also consults with companies and government agencies that require advice on state-of-the-art statistical and probabilistic methods and their applications. In addition, it allows graduate students to apply, in a supervised manner, established and new statistical and probabilistic approaches to real-world problems, and offers general and organization-specific short-term training programs and state-of-the-art courses in statistical methodologies and practices. The Center’s faculty represent a range of statistical expertise, and they have extensive research and consulting experience. These faculty members, together with talented graduate students, provide advice and guidance on the appropriate use of statistical and probabilistic methods, on a consulting or short course basis.

Faculty*
Professors
Berg, D. — NAE, Ph.D. (Yale University) Institute Professor of Science and Technology (joint in Lally School of Management and Information Technology); management of technological organizations, innovation, policy, robotics, policy issues of research and development in the service sector.
Ecker, J.G. — (Mathematical Sciences) Ph.D. (University of Michigan); mathematical programming, multiobjective programming, geometric programming, mathematical programming applications, ellipsoid algorithms.
Grabowski, M. — Ph.D. (Rensselaer Polytechnic Institute); management information systems, knowledge-based systems, human and organizational error in large-scale systems, impact of information technology on systems and organizations; Research Professor.
Graves, R.J. — Ph.D. (State University of New York at Buffalo); manufacturing systems modeling and analysis, facilities planning and material handling system design, scheduling systems, concurrent engineering and design for manufacture, continuous flow manufacturing systems design, distributed manufacturing concepts, information infrastructure.
Hsu, C. — Ph.D. (Ohio State University); electronic commerce, metadatabase and information systems, enterprise integration and modeling, internet enterprises planning, computerized manufacturing, information visualization, economic evaluation of cyberspace-augmented enterprises.
Hughes, G. — (Economics) Ph.D. (Princeton University); global economics, economics of information technology; Clinical Professor.
List, G.F. — (Civil Engineering) P.E., Ph.D. (University of Pennsylvania); real-time control of transportation network operations; multiobjective routing, scheduling, and fleet sizing; operations planning; hazardous materials logistics.
Malmborg, C.J. — Ph.D. (Georgia Institute of Technology); modeling and analysis of problems in facility design, materials handling, material flow, storage systems, simulation-based optimization methods, manufacturing systems, decision analysis.
Raghavachari, M. — Ph.D. (University of California at Berkeley); statistical inference, quality control, multivariate methods, scheduling problems.
Tien, J.M. — NAE, Ph.D. (Massachusetts Institute of Technology) Yamada Corporation Professor (joint in Electrical, Computer, and Systems Engineering; IT); systems modeling, queuing theory, public policy and decision analysis, computer performance evaluation, and information and decision support systems, expert systems, computational cybernetics.
Wallace, W.A. — Ph.D. (Rensselaer Polytechnic Institute) (joint in Civil Engineering; Cognitive

* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2003 Board of Trustees meeting.
Sciences; IT); decision support systems, environmental management modeling process, disaster management.

Willemain, T.R.—Ph.D. (Massachusetts Institute of Technology); probabilistic modeling, data analysis, forecasting.

Associate Professors

Embretcs, M.J.—Ph.D. (Virginia Polytechnic Institute); application of neural networks and fuzzy logic for manufacturing and process control; image recognition and classification with the aid of neural networks; smart experiments; neural networks for trading and finance; neural networks, fractals, chaos, and wavelets for time-series analysis; data mining and computational intelligence.

Foley, W.J.—P.E., Ph.D. (Rensselaer Polytechnic Institute); engineering design, computer simulation modeling, health applications of operations research, health care policy analysis; Clinical Associate Professor.

Heragu, S.S.—Ph.D. (University of Manitoba); artificial intelligence, cellular manufacturing, facilities design, intelligent manufacturing systems, materials handling, next-generation factory layout design, production and operations management, operations research, scheduling, storage and warehousing.

Holguin-Veras, J.—(Civil and Environmental); Ph.D. (University of Texas/Austin); transportation modeling and transportation economics, information technology, information systems, optimization techniques.

Mitchell, J.E.—(Mathematical Sciences) Ph.D. (Cornell University); mathematical programming, integer programming, interior point methods, column generation methods, financial optimization, stochastic programming.

Sullo, P.—Ph.D. (Florida State university); reliability, life testing, statistical quality control, quality management, biostatistics, industrial statistics.

Assistant Professors

Aboul-Seoud, M.—Ph.D. (University of Louisville); reliability engineering, quality control, operations research; Clinical Assistant Professor.

Chang, W.—Ph.D. (Georgia Institute of Technology); computational statistics using multiscale methods, signal/image processing in biomedical engineering, pattern recognition, and stochastic system modeling.

Gupta, A.—Ph.D. (Stanford University); behavioral aspects of optimization and application problems in finance, large-scale problems in decision making, simulation methods and tools for solving large-scale problems, simulation-based optimization.

Krishnamurthy, A.—Ph.D. (University of Wisconsin-Madison); queuing models and simulation based approaches for design and analysis of manufacturing systems, quick response manufacturing, queuing networks, analytical models in fabrication/assembly systems.

Taner, M.—Ph.D (North Carolina State University); e-commerce, production scheduling, distributed manufacturing systems; Clinical Assistant Professor.

Yang, Y.—(Cognitive Science) Ph.D. (New York University); cognitive psychology, thinking, reasoning, decision-making, cognitive science.

Adjunct Faculty

Hahn, G.—Ph.D. (Rensselaer Polytechnic Institute); applied statistics, operations research.

Kupferschmid, M.—P.E., Ph.D. (Rensselaer Polytechnic Institute); mathematical programming, algorithm performance evaluation, engineering applications.

Lawrence, C.—Ph.D. (Cornell University); statistical methods for bioinformatics, biometrics, Bayesian statistics, sequential analysis, statistical computing.

Mars, C.M.—B.S. (Rensselaer Polytechnic Institute); industrial safety and hygiene.
Sandhu, D.—Ph.D. (University of Toronto); stochastic models in operations research, complex queuing networks, applications to communication and manufacturing systems.

Tucker, W.—Ph.D. (Oklahoma State); applied statistics, operations research, quality control.

Affiliated Professors

Desrochers, A.—(Electrical, Computer, and Systems Engineering) Ph.D. (Purdue University); performance modeling of automated manufacturing systems application to Petri nets, transfer lines, manufacturing architectures, database and network transactions, distributed systems.

Grivas, D.—(Civil Engineering) Ph.D. (Purdue University); engineering infrastructure asset management systems, infrastructure databases, applications of fuzzy sets and expert systems, probabilistic modeling, risk analysis, assessment, management.

Haddock, J.—(Lally School of Management); Ph.D. (Purdue University); mathematical and simulation modeling, just-in-time manufacturing, lean management techniques, corporate paradigms.

Kelly, L.J.—(Rensselaer at Hartford) Ph.D. (University of Connecticut); statistics, operations management; Clinical Associate Professor.

Norsworthy, J.R.—(Lally School of Management and Technology) Ph.D. (University of Virginia); economics of productivity, productivity measurements, industrial economics.

Paulson, A.S.—(Lally School of Management and Technology) Ph.D. (Virginia Polytechnic Institute); risk management, financial models, multivariate statistics, time series and forecasting, survival data analysis.

Simons, G.—(Lally School of Management); Ph.D. (Rensselaer Polytechnic Institute); manufacturing strategy and policy, technology strategies, infrastructure, application of network models.

Affiliated Associate Professors

Bennett, K.—(Mathematical Sciences) Ph.D. (University of Wisconsin); mathematical programming, operations research, artificial intelligence.

Franklin, W.R.—(Electrical, Computer, and Systems Engineering) Ph.D. (Harvard University); computational geometry, graphics, CAD, cartography, parallel algorithms, large databases, expert system verification.

Goldenberg, D.H.—(Lally School of Management and Technology) Ph.D. (University of Florida); derivatives markets, stochastic modeling of prices, options in corporate finance.

Gutierrez-Miravete, E.—(Rensselaer at Hartford) Ph.D. (Massachusetts Institute of Technology); materials processing, transport phenomena, clean technologies, advanced mathematics for applications, numerical computing, mathematical modeling, computer simulation.

Maleyeff, J.—(Rensselaer at Hartford) Ph.D. (University of Massachusetts); statistical quality assurance in manufacturing, administration and health care; computer simulation of operating systems; development of effective teaching methodologies.

Messac, A.—(Mechanical, Aerospace and Nuclear Engineering); Ph.D. (Massachusetts Institute of Technology); multiattribute design optimization, design and manufacturing, concurrent engineering.

Affiliated Assistant Professor

Arnheiter, E.D.—(Rensselaer at Hartford) Ph.D. (University of Massachusetts); Monte Carlo simulation and probabilistic models in quality, modular consortiums, and automotive production models.

Ravichandran, T.—(Lally School of Management and Technology) Ph.D. (Southern Illinois University, Carbondale); management information systems.

Zaki, M.J.—(Computer Sciences) Ph.D. (University of Rochester); design of efficient, scalable, and parallel algorithms for various data mining techniques.

Emeritus Faculty

Wilkinson, J.—Ph.D. (University of North Carolina); regression modeling, statistical analysis.
Undergraduate Programs

Objectives of the Undergraduate Curriculum

While certain objectives of an undergraduate education in engineering are common to all programs, there are subtle but important differences for some subset of objectives specific to ensuring that all graduates have specialized technical knowledge in their chosen field. In this regard, the Department of Decision Sciences and Engineering Systems baccalaureate program educates students in the fundamental theories, principles, methodologies and practices of Industrial and Management Engineering while seeking to develop in its graduates:

- The ability to apply a total integrated systems perspective to the practice of industrial and management engineering.
- The ability to apply knowledge of manufacturing and service systems to the practice of industrial and management engineering.
- The ability to apply in-depth knowledge of computing to the practice of industrial and management engineering.
- The ability to manage people and systems.
- The ability to design innovative products, services, facilities, equipment, processes and systems.
- The ability to identify, model, analyze, and solve challenging real-life problems.
- A solid foundation in math and science.
- Strong communication skills with emphasis on technical writing and interpersonal communication.
- The ability to perform effectively on diverse teams, both as leader and contributor.
- Informed citizens broadly educated in the humanities and social sciences.
- Preparation to practice engineering in a socially responsible and ethical manner.
- Motivation and preparation for continued growth and learning.

Baccalaureate Programs

The Department of Decision Sciences and Engineering offers a curriculum in Industrial and Management Engineering (IME). The first two years of this curriculum provide a strong foundation in basic science, engineering science, mathematics, and the humanities and social sciences. These two years are oriented toward the quantitative (mathematical) approach. Computer-based technology, including simulation, modeling, and systems design, is emphasized. In the last two years of the program, students concentrate on building expertise in statistics, operations research, manufacturing, systems engineering, and industrial engineering methods and models. Through the appropriate choice of electives, students can focus on their selected areas of interest. Design projects include problems in both manufacturing and service systems, including information and public systems. It is advisable to develop a plan of study leading to the desired degree and concentration by the beginning of the third year.

DSES recommends that students declare their intent to major in industrial and management engineering as early as possible in their academic career. Students are also urged to work closely with their assigned faculty advisers to ensure that all degree requirements are satisfied. This curriculum requires a minimum of 128 credit hours and completion of the course requirements shown in the typical four-year program presented below.
First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit hours</th>
<th>Course</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1100</td>
<td></td>
<td>Introduction to Engineering</td>
<td></td>
</tr>
<tr>
<td>ENGR-1300</td>
<td></td>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>MATH-1010</td>
<td></td>
<td>Calculus I</td>
<td></td>
</tr>
<tr>
<td>CHEM-1300</td>
<td></td>
<td>Chemistry Principles for Engineers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit hours</th>
<th>Course</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1200</td>
<td></td>
<td>Engineering Graphics and CAD</td>
<td></td>
</tr>
<tr>
<td>MATH-1020</td>
<td></td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>PHYS-1100</td>
<td></td>
<td>Physics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit hours</th>
<th>Course</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2050</td>
<td></td>
<td>Intro. to Engineering Design</td>
<td></td>
</tr>
<tr>
<td>MATH-2400</td>
<td></td>
<td>Intro. to Differential Equations</td>
<td></td>
</tr>
<tr>
<td>PHYS-1200</td>
<td></td>
<td>Physics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit hours</th>
<th>Course</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2600</td>
<td></td>
<td>Modeling and Analysis of</td>
<td></td>
</tr>
<tr>
<td>CSCI-1100</td>
<td></td>
<td>Computer Science I</td>
<td></td>
</tr>
<tr>
<td>DSES-2210</td>
<td></td>
<td>Production and Operations Mgmt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multidisciplinary Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit hours</th>
<th>Course</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2350</td>
<td></td>
<td>Embedded Control</td>
<td></td>
</tr>
<tr>
<td>DSES-4140</td>
<td></td>
<td>Statistical Analysis</td>
<td></td>
</tr>
<tr>
<td>DSES-4640</td>
<td></td>
<td>Operations Research I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Development II</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit hours</th>
<th>Course</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSES-4230</td>
<td></td>
<td>Quality Control</td>
<td></td>
</tr>
<tr>
<td>DSES-4650</td>
<td></td>
<td>Operations Research II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multidisciplinary Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elective 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit hours</th>
<th>Course</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSES-4270</td>
<td></td>
<td>IME Design</td>
<td></td>
</tr>
<tr>
<td>ENGR-4100</td>
<td></td>
<td>Professional Development III</td>
<td></td>
</tr>
<tr>
<td>DSES-4530</td>
<td></td>
<td>Information Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit hours</th>
<th>Course</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSES-4270</td>
<td></td>
<td>Eng. Economics and Project</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
</tbody>
</table>

1. Adviser approved course in science, computer science, or mathematics.
2. Students must select any two of the following approved multidisciplinary electives:
 - ENGR-1600
 - ENGR-2090
 - ENGR-2250
 - ENGR-2530
 - ENGR-2710
 - ENGR-4050
 - ENGR-4300

3. This course can be fulfilled by taking a two-credit course from a list of courses published at the start of each semester.
4. Students may select any three of the following courses to satisfy technical elective requirements (Note that certain graduate level DSES courses can also serve as technical electives for eligible undergraduates with permission of the instructor and the adviser):
 - DSES-4200
 - DSES-4250
 - DSES-4260
 - DSES-4810
 - DSES-4280

5. May be taken in either fall or spring semester.
Electives
The free electives indicated above may be chosen from any academic discipline to broaden the student’s educational background and/or develop greater depth in a selected discipline.

Humanities and Social Sciences Electives
The electives in this area are based on the Institute and School of Engineering requirements. Students are urged to elect humanities and social science sequences through which they will obtain adequate breadth and depth in subject areas. Students desiring minors in Humanities and Social Sciences must consult the school or department in which the courses are offered to obtain further information and specific requirements.

Special Undergraduate Opportunities
Cooperative Education Program
DSES encourages this option, which allows students to gain professional experience as part of the educational program. Additional information on co-op opportunities is included in the Educational Programs and Resources section of this catalog, as well as through the faculty adviser or the Career Development Center.

Graduate Programs
Master’s Programs
The Department of Decision Sciences and Engineering Systems offers two master’s level degrees, both of which can be earned within each of three curricula. These curricula and their individual requirements are described below.

Industrial and Management Engineering (IME) Curricula
Students can work toward either the M.S. degree, which requires a project or thesis, or the nonthesis M.Eng. degree. These IME degrees are also available through distance learning. Contact the Office of Professional and Distance Education for course scheduling information.

In general, all applicants to the IME master’s programs must take the Graduate Record Exam (GRE). This requirement is especially important for those requesting financial aid, due to the large number of aid requests. However, for students applying to the M.Eng. program, the GRE may sometimes be waived. In special situations, and with departmental approval, the GMAT may be substituted for the GRE.

All students seeking either of the IME master’s degrees must have completed the following two courses in their undergraduate program at Rensselaer or have had the equivalent courses elsewhere:
- Applied Operations Research (equivalent to DSES-6960 Systems Modeling and Decision Sciences)
- Introduction to Applied Statistics (equivalent to DSES-6110)

Both IME master’s degrees require a minimum of 30 credit hours.

In addition to the above prerequisite courses, a student's core course work must include:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSES-6470</td>
<td>Global Strategic Management of Technological Innovation</td>
</tr>
<tr>
<td>DSES-6500</td>
<td>Information and Decision Technologies for Industrial and Service Systems</td>
</tr>
<tr>
<td>DSES-6600</td>
<td>Models for Production Control and</td>
</tr>
<tr>
<td>DSES-6620</td>
<td>Service Logistics</td>
</tr>
<tr>
<td>DSES-6xxx</td>
<td>Simulation Modeling and Analysis</td>
</tr>
<tr>
<td></td>
<td>Applied Statistics Elective (One graduate course from those listed under the Applied Probability and Statistics and Quality Control concentration.)</td>
</tr>
</tbody>
</table>
For students seeking the M.S. degree, three to nine of the 30 credit hours must be in DSES-6990 (Master’s Thesis) or DSES-6980 (Master’s Project). The thesis or project credits can also count toward the nine-credit-hour (three-course) concentration that the program requires.

While the remainder of the program may be tailored to the student's interest, the plan of study must include a concentration area. The concentration is a set of three or more courses (or nine credit hours) that reflects a logical progression for developing a base of expertise in an area of study. Concentrations will usually, but not always, include at least one of the core courses listed above. Listed below are several concentration areas and the courses that are within each area.

Applied Operations Research Concentration
- DSES-4770 Mathematical Models of Operations Research
- DSES-4780 Computational Optimization
- DSES-6050 Stochastic Processes
- DSES-6200 Models in Facilities Planning and Materials Handling
- DSES-6210 Theory of Production Scheduling
- DSES-6630 Simulation of Large-Scale Systems
- DSES-6760 Combinatorial Optimization and Integer Programming
- DSES-6770 Linear Programming
- DSES-6780 Nonlinear Programming
- DSES-6820 Queuing Systems and Applications
- DSES-6830 Large-Scale Systems: Case Studies and Analyses
- DSES-6840 Modeling Large-Scale Systems
- DSES-6850 Evaluation Methods for Decision Making
- DSES-6890 Multiple Criteria Decision Making

Applied Probability and Statistics and Quality Control Concentration
- DSES-4750 Probability Theory and Applications
- DSES-4760 Mathematical Statistics
- DSES-6010 Applied Regression Analysis
- DSES-6020 Design of Experiments
- DSES-6030 Sampling Methods
- DSES-6040 Nonparametric Methods
- DSES-6050 Stochastic Processes
- DSES-6060 Applied Multivariate Analysis
- DSES-6070 Statistical Methods for Reliability Engineering
- DSES-6090 Decision Analysis
- DSES-6100 Time Series Analysis
- DSES-6140 Exploratory Data Analysis
- DSES-6150 Advanced Probability for Statistical Inference

Information Systems Concentration
- DSES-4810 Computational Intelligence
- DSES-6220 Concurrent Engineering
- DSES-6500 Information and Decision Technologies for Industrial and Service Systems
- DSES-6520 Enterprise Database Systems
- DSES-6530 Decision Support and Expert Systems
- DSES-6550 Information Systems Analysis and Design
- DSES-6560 Information Technology and Systems for Enterprise Engineering
- DSES-6570 Information Technology and Systems for E-Business
- DSES-6870 Introduction to Neural Networks

Management of Technology Concentration
- MGMT-6160 New Ventures
- MGMT-6190 Financial and Managerial Accounting
- MGMT-6300 Business Economics
- MGMT-6310 Financial Management and Valuation of Firms
- MGMT-6600 Research and Development Management
- DSES-6470 Global Strategic Management of Technological Innovation
- DSES-6480 Service Operations Management
- DSES-6830 Large-Scale Systems: Case Studies and Analyses
- DSES-6860 Evaluation Methods for Decision Making
Manufacturing Systems Engineering (MSE) Curricula

In this curriculum, DSES offers multidisciplinary M.S. and M.Eng. degrees in programs that combine modeling, statistical, computer, design, and management skills focused on the process of manufacturing. The programs provide students with an option to combine courses in DSES with concentration courses in electrical engineering, mechanical engineering, computer science, or management. Alternatively, students can elect to focus the entire plan of study in DSES. Course work concentrations are available in manufacturing systems modeling, manufacturing information systems, manufacturing systems quality, manufacturing processes and technology, and manufacturing systems management.

All applicants to this program are encouraged to take the Graduate Record Exam (GRE). This requirement is especially important for those requesting financial aid, due to the large number of aid requests. The GRE may be waived or the GMAT may be substituted for the GRE for students applying to the M.Eng. program.

All students seeking either of the MSE master’s degrees must have completed the following two courses in their undergraduate program at Rensselaer or have had the equivalent course elsewhere:

Applied Operations Research (equivalent to DSES-6960)
Introduction to Applied Statistics (equivalent to DSES-6110)

Both MSE master’s degrees require a minimum of 30 credit hours.

In addition to the above prerequisite courses, a student’s core course work must include:

For students seeking the M.S. degree, three to nine of the 30 credit hours must be in DSES-6990 (Master’s Thesis) or DSES-6980 (Master’s Project). The thesis or project credits can also count toward the nine-credit-hour (three-course) concentration that the program requires.

While the remainder of the program may be tailored to the student’s interest, the plan of study must include a concentration area. The concentration is a set of three or more courses (or nine credit hours)

1Students can also satisfy this part of the requirement for the service systems concentration through two application-focused courses approved by the academic adviser. Examples of applications foci include financial services, health systems, transportation, retailing, public systems, quality systems, and marketing.
that reflects a logical progression for developing a base of expertise in an area of study. Concentrations will usually, but not always, include at least one of the core courses listed above. Listed below are several concentration areas and the courses that are within each area.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Systems Modeling</td>
<td></td>
<td>CSCI-6470 Database Systems for Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSCI-6960 Network Programming</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-4810 Computational Intelligence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-6500 Information and Decision Technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for Industrial and Service Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-6520 Enterprise Database Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-6530 Decision Support and Expert Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-6560 Information Technology and Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for Enterprise Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-6620 Discrete-Event Simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-6870 Introduction to Neural Networks</td>
</tr>
<tr>
<td>Manufacturing Processes and Technology</td>
<td></td>
<td>Manufacturing Systems Quality Concentration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECSE-4490 Fundamentals of Robotics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECSE-6410 Robotics and Automation Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTLE-4160 Semiconducting Materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTLE-4420 Joining of Advanced Materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANE-4510 Metal Cutting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANE-4550 Analysis of Manufacturing Processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANE-6120 Robotics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANE-6450 Mechanics of Materials Processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANE-6800 Manufacturing Systems Integration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-4200 Design and Analysis of Work Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-4260 Industrial Safety and Hygiene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-6220 Concurrent Engineering</td>
</tr>
<tr>
<td>Manufacturing Systems Management</td>
<td></td>
<td>ENGR-4700 Introduction to Manufacturing Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGR-4710 Advanced Manufacturing Laboratory I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGR-4720 Advanced Manufacturing Laboratory II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGMT-6210 Manufacturing Accounting and Control Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGMT-6490 Competitive Advantage and Operations Strategy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-4240 Engineering Project Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-6470 Global Strategic Management of Technological Innovation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSES-6480 Service Operations Management</td>
</tr>
<tr>
<td>Manufacturing Information Systems</td>
<td></td>
<td>ECSE-4670 Computer Communications Networks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECSE-4710 Interactive Computer-Aided Design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECSE-4750 Computer Graphics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECSE-6400 Systems Analysis Techniques</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECSE-6610 Pattern Recognition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECSE-6640 Digital Picture Processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECSE-6650 Computer Vision</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECSE-6770 Software Engineering I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECSE-6780 Software Engineering II</td>
</tr>
</tbody>
</table>
For most students, the M.Eng. program of study will also allow for six credits of elective courses.

Operations Research and Statistics Curricula
In this curriculum, DSES offers M.S. and M.Eng. degree programs that combine course work in applied probability and statistics, optimization, modeling, and decision sciences in the scientific application of quantitative tools to support decision making. The scope of the programs includes the formulation, solution, and implementation of mathematical models of decision problems to measure, evaluate, and optimize system performance. Most students can complete either program in 30 credit hours. Any student planning to enroll in the DSES doctoral program should consult with the faculty adviser prior to making course selections.

The diversity of this curriculum’s faculty enables these programs to encompass varied research topics. A student may work simultaneously on a master’s degree in this program and on a degree in computer science, business administration, mathematics, computer and systems engineering, or another related area.

Most students participating in this curriculum hold a bachelor’s or master’s degree in engineering, mathematics, the physical sciences, business administration, or management. Students with training in other disciplines such as economics and the social sciences are also encouraged to apply if their quantitative backgrounds include the equivalent of at least three semesters of calculus and linear algebra.

All applicants are required to take the Graduate Record Examination (GRE) except under extenuating circumstances.

For the master’s programs in operations research and statistics, no prerequisites are required. However, the following courses or their equivalents are required.

<table>
<thead>
<tr>
<th>Credit hours</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSES-4640</td>
<td>Operations Research I4</td>
</tr>
</tbody>
</table>
| | or
| DSES-4750 | Probability Theory & Applications ..4 |
| | and
| DSES-4760 | Mathematical Statistics4 |
| | and
| DSES-6050 | Stochastic Processes3 |
| or
| DSES-6150 | Advanced Probability for Statistical |
| | Inference3 |
| | or
| DSES-6620 | Queuing Systems & Applications 3 |
| | and
| DSES-6620 | Discrete-Event Simulation3 |
| | and
| DSES-6060 | Applied Multivariate Analysis3 |
| | or
| DSES-6140 | Exploratory Data Analyses3 |
| | and
| DSES-6820 | Modeling Optimization Elective3* |

While the remainder of the program may be tailored to the student’s interest, the plan of study must include a concentration area. The concentration is a set of three or more courses (or nine credit hours) that reflects a logical progression for developing a base of expertise in an area of study. Concentrations will usually, but not always, include at least one of the core courses listed above. Listed below are several concentration areas and the courses that are within each area.

* Any course listed under the Modeling/Optimization Concentration except DSES-4770.
<table>
<thead>
<tr>
<th>Quality and Reliability Concentration</th>
<th>Simulation Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSES-6020 Design of Experiments</td>
<td>DSES-6630 Continuous Stochastic System</td>
</tr>
<tr>
<td>DSES-6050 Stochastic Processes</td>
<td>DSES-6020 Design of Experiments</td>
</tr>
<tr>
<td>DSES-6070 Statistical Methods for Reliability Engineering</td>
<td>DSES-6050 Stochastic Processes</td>
</tr>
<tr>
<td>DSES-6150 Advanced Probability for Statistical Inference</td>
<td>DSES-6100 Time Series Analysis</td>
</tr>
<tr>
<td>DSES-6170 Management of Quality Processes and Reliability</td>
<td>DSES-6150 Advanced Probability for Statistical Inference</td>
</tr>
<tr>
<td>DSES-6230 Quality Control and Reliability</td>
<td>DSES-6820 Queuing Systems and Applications</td>
</tr>
<tr>
<td></td>
<td>DSES-6870 Introduction to Neural Networks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forecasting Concentration</th>
<th>Data Mining Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON-6570 Econometrics</td>
<td>DSES-4810 Computational Intelligence</td>
</tr>
<tr>
<td>DSES-6000 Applied Regression Analysis</td>
<td>DSES-6010 Applied Regression Analysis</td>
</tr>
<tr>
<td>DSES-6060 Applied Multivariate Analysis</td>
<td>DSES-6020 Design of Experiments</td>
</tr>
<tr>
<td>DSES-6100 Time Series Analysis</td>
<td>DSES-6030 Sampling Methods</td>
</tr>
<tr>
<td>DSES-6130 Statistical Computing</td>
<td>DSES-6040 Nonparametric Methods</td>
</tr>
<tr>
<td>DSES-6140 Exploratory Data Analysis</td>
<td>DSES-6060 Applied Multivariate Analysis</td>
</tr>
<tr>
<td>DSES-6150 Advanced Probability for Statistical Inference</td>
<td>DSES-6100 Time Series Analysis</td>
</tr>
<tr>
<td>DSES-6870 Introduction to Neural Networks</td>
<td>DSES-6130 Statistical Computing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decision Analysis Concentration</th>
<th>Information Systems Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSES-4750 Probability Theory and Applications</td>
<td>DSES-4810 Computational Intelligence</td>
</tr>
<tr>
<td>DSES-6090 Decision Analysis</td>
<td>DSES-6500 Information and Decision Technologies for Industrial and Service Systems</td>
</tr>
<tr>
<td>DSES-6500 Information and Decision Technologies for Industrial and Service Systems</td>
<td>DSES-6520 Enterprise Database Systems</td>
</tr>
<tr>
<td>DSES-6830 Large-Scale Systems: Case Studies and Analyses</td>
<td>DSES-6560 Information Technology and Systems for Enterprise Engineering</td>
</tr>
<tr>
<td>DSES-6860 Evaluation Methods for Decision Making</td>
<td>DSES-6620 Discrete-Event Simulation</td>
</tr>
<tr>
<td>DSES-6890 Multiple Criteria Decision Making</td>
<td>DSES-6870 Introduction to Neural Networks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modeling/Optimization Concentration</th>
<th>Financial Engineering Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSES-4770 Mathematical Models of Operations Research</td>
<td>MATH-4200 Mathematical Analysis I</td>
</tr>
<tr>
<td>DSES-4780 Computational Optimization</td>
<td>MGMT-4370 Risk Management</td>
</tr>
<tr>
<td>DSES-6200 Models in Facilities Planning and Materials Handling</td>
<td>MGMT-6320 Investment Analysis I</td>
</tr>
<tr>
<td>DSES-6210 Theory of Production Scheduling</td>
<td>MGMT-6330 Investment Analysis II</td>
</tr>
<tr>
<td>DSES-6760 Combinatorial Optimization and Integer Programming</td>
<td>MGMT-6340 Financial Markets and Institutions</td>
</tr>
<tr>
<td>DSES-6770 Linear Programming</td>
<td>DSES-6010 Applied Regression Analysis</td>
</tr>
<tr>
<td>DSES-6780 Nonlinear Programming</td>
<td>DSES-6060 Applied Multivariate Analysis</td>
</tr>
<tr>
<td>DSES-6840 Modeling Large-Scale Systems</td>
<td>DSES-6100 Time Series Analysis</td>
</tr>
<tr>
<td>DSES-6870 Introduction to Neural Networks</td>
<td>DSES-6130 Statistical Computing</td>
</tr>
</tbody>
</table>
Doctoral Programs

Students working toward the Ph.D. in DSES may choose to major in industrial engineering, information systems, manufacturing systems engineering, operations research, or statistics. Advanced research and a dissertation in the chosen field are required in the doctoral program. In addition, Ph.D. students must complete the following:

- Institution requirements established by the Office of Graduate Education.
- Seminar in DSES research: Doctoral students must complete DSES-6900 during the fall semester of the first academic year of residency. This course is intended to introduce the student to the research environment at Rensselaer and to provide background on the process of doctoral research in DSES. Another intent of the course is to develop the student’s communication skills.
- Doctoral qualifying examination: Each student must take an oral examination covering the core areas of DSES. The basis for this examination includes DSES-4530, DSES-4750, DSES-4760, DSES-4770, and DSES-6500 or their equivalents. This examination is normally taken at the end of the second semester of residency. A more detailed description of this and other required examinations is available from the DSES doctoral program director.
- Doctoral area and advanced seminar requirement: Doctoral students must register for and complete DSES-6910 during the fall semester of the second academic year of residency. This seminar reviews methods for undertaking DSES research and requires students to prepare a research paper under the guidance of a faculty adviser. This requirement also includes course work in a selected major area. See the DSES doctoral program director for detailed documentation of DSES doctoral area requirements.
- Doctoral candidacy examination: Each student must take an oral candidacy examination after passing the DSES area requirement but before completing 75 credit hours of graduate work. This examination tests the candidate’s background for the proposed research, appropriateness of the thesis research, and the ability of the candidate to successfully complete the research. The thesis research proposal must contain at least one result that meets journal publishing standards.
- Doctoral dissertation and defense: Each student must write a doctoral thesis and give a formal oral public defense.

Apart from the seminar and advanced seminar in DSES research, doctoral area course requirements, and equivalent course material for the doctoral qualifying examination, there are no formal course requirements for the doctoral degree. However, the student is expected to develop in-depth knowledge in his/her dissertation area through appropriate course work, as well as supervised research. A plan of study is required, which must be approved by the thesis adviser and the DSES doctoral program director. Representative programs of study are available from the DSES doctoral program director.

Course Descriptions

Courses directly related to all Decision Sciences and Engineering Systems curricula are described in the Course Description section of this catalog under the department code DSES.
Electrical, Computer, and Systems Engineering

Chair: Kenneth A. Connor

Curriculum Chair: A. Bruce Carlson

Director of Master's Programs: Yannick L. LeCoz

Director of Doctoral Programs: Alan A. Desrochers

Department Home Page: http://www.ecse.rpi.edu/

Electrical, computer, and systems engineers have long been at the forefront of new discoveries and their integration into advanced design and engineering methodologies. Inventions in areas such as integrated electronics and optical devices stimulate innovations in computers, control, and communications. New systems theory and mathematical techniques are then needed for analysis and design work.

As a broad-based department, Electrical, Computer, and Systems Engineering (ECSE) offers several advantages for undergraduate and graduate study. One is the ability to attack the many facets of modern problems that cut across disciplinary lines. Another is the flexibility for students to embark on individually tailored programs and for the department to launch new areas of research.

The department offers programs of study leading to bachelors, master's, and doctoral degrees in electric power engineering, electrical engineering, and computer and systems engineering. Each curriculum is sufficiently flexible to accommodate a wide range of interests. The curriculum the student selects is determined by his or her specific interests and, in some cases, by directions within a field of interest.

Research and Innovation Initiatives

Communications, Information, and Signal Processing

Advanced study and research in this field deals with the encoding, transmission, retrieval, and interpretation of information. Students may pursue programs of study strong in mathematical foundations, or oriented more toward hardware and practical implementation, or a combination of both.

Communications research focuses on the transmission of information over wireless, optical, and wire channels. Link level concerns, such as modulation and coding, as well as local and wide area networks are considered. Two of the fundamental subdisciplines emphasized are statistical communications and telecommunications. The former considers special types of systems in different environments, typified by random signals in random channels, as in space communication. The latter includes the hardware and societal demands of telephone, wireless communications, cable television, communications networks (including ATM and ISDN), and other systems.

The area of information processing is concerned primarily with the theory and engineering design associated with interpreting and manipulating received data, primarily in discrete form. Major research topics include information theory, including rate distortion theory, along with the coding and compression of speech, image, and video signals. A quantitative understanding of the nature and meaning of information provides a theoretical foundation. A special research emphasis at Rensselaer is the application of image transmission and interpretation techniques to pattern recognition, image processing, digital video, and speech recognition.

Signal processing considers the application of digital processing techniques to problems encountered in many areas, including biomedical instrumentation, control systems, and audio processing.
Special laboratories are available for speech processing, video and image processing, networking and communications.

Computer Networks

Research focal areas in computer networking include network management, traffic management, congestion control, traffic engineering, quality-of-service (QoS) architectures, multimedia networking, network modeling, measurement, and performance analysis. The application areas include wired, wireless, ad-hoc, satellite networks, and pervasive computing. The networking group also participates in interdisciplinary research in control theory, economics, scalable simulation technologies, and video compression.

As world networks get increasingly complex, the need for automated network management and sophisticated traffic management capabilities becomes more urgent. The theoretical foundations for these areas are of immense interest. Moreover, the structure of the Internet in terms of thousands of ISPs demands new economic models and mechanisms to ensure continued investment and growth of Internet services. Network heterogeneity—especially in terms of wired, wireless, ad-hoc, and satellite—demands fundamental research for seamless interconnection. Rensselaer's modeling subgroup serves all areas in terms of self-similar and advanced stochastic models. Finally, newer applications with QoS capabilities need to be deployed on the Internet and co-exist with the current applications. The computer network group works on all these areas with a mix of analysis, simulation, and experimental tools.

Computer Vision, Image Processing, Geometry, and Digital Media

Research in image processing covers a range of technologies and applications. This activity occurs at the Center for Image Processing Research (CIPR), the Center for Subsurface Sensing and Imaging Systems (CenSSIS), and the Center for Next Generation Video (CNGV), as well as the Document Analysis Laboratory (DocLab), Advanced Imaging Systems Laboratory, Computer Vision and Robotics Laboratory, and Intelligent Systems Laboratory.

Research areas include pattern recognition, computer vision, multidimensional and multimodality image analysis, image compression, biotech assay automation, eye tracking, optical scanning systems, artificial intelligence, graphics, computational geometry, and Internet image analysis services.

Application areas include computer-assisted surgery, radiation treatment planning, medical image reconstruction, document image analysis, geographic data analysis, and image analysis aids to neurobiology. Additional application areas are bioinformatics, human fatigue monitoring, human computer interaction, video imagery activity interpretation, decision making under uncertainty, robot localization, robotic devices for automated scoring of assays for the biotechnology industry, and biological multidimensional microscopy.

The work of digital media includes such topics as image processing algorithms and architectures for digital cinema, advanced image compression and decompression algorithms, and methods for indexing video by content. Multimedia work also includes graphics courseware development for the World Wide Web using HTML, Java, PHP, my SQL, and VRML.

Computer Hardware, Architecture, VLSI and Mixed Signal Design

The design, implementation, layout, and testing of hardware systems constitute a vital component of computer engineering research. Research areas include multichip packaging concepts, high-frequency package characterization, thermal management, optical interconnections, and packaging reliability. Other topics include advanced concepts in fault tolerant computing, wafer-scale integration, high-speed GaAs RISC engines architectures for VLSI signal processing, and computer-aided design of VLSI for CMOS, bipolar, BiCMOS, and GaAs MESFET circuits. Fabrication and testing facilities are available in the Center for Integrated Electronics.
Control, Robotics, and Automation

Current research projects address both the theory and application of control. Faculty interest in control theory includes adaptive control, large-scale systems, optimization, multivariable control, robust control, nonlinear control, model reduction, and discrete event systems. Design results are applied to robotics, advanced automation systems, flexible manufacturing, human physiology, large space structures, power systems, semiconductor systems, and material processing systems.

In robotics research, the focus is on intelligent robotic systems. Such systems represent a class of autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. This research is instrumental in advancing the theory of intelligent control with applications to systems of robotic arms. A robotic transporter with two-arm manipulative capabilities, stereo vision, and tactile sensing, connected to a Sun workstation network has been developed.

The design of controllers of large-scale systems is highly complex. Research is being performed on the design of low-order, structurally constrained robust controllers using iterative methods and convex programming techniques. Emphasis is also being given to linear and nonlinear model reduction methods. Applications to power systems, aircraft engines, and flexible structures are being considered, together with the development of control-aided design software.

Today, low-cost, highly reliable microcomputers and workstations that can be used for both control systems design and control system synthesis are widely available. As a result, increased emphasis has been placed on the design of implementable digital adaptive control logic that can be used for maintaining uniform qualities in an aircraft or other systems, despite large variations in the parameters that define the system dynamic equations. Such adaptive control algorithms have been developed and applied to a wide range of applications, including robotics, blood pressure control, large flexible systems, and flight control systems.

Discrete event systems theory is an emerging discipline relevant to communication protocols and parallel computing as well as manufacturing control. Petri net and formal language theory are being developed to model, design, analyze, evaluate performance, and control such interconnected systems. Important issues are deadlock avoidance, synchronization, concurrency, resource allocation, and random events. Applications under study are manufacturing automation and integration, and task coordination for cooperating robotic systems.

All dynamic systems are fundamentally nonlinear. The nonlinearity can be either treated as a perturbation of a nominally linear system or directly taken into account in a nonlinear control design. In the first approach, linear control designs have been developed under various performance and robustness specifications. In the second approach, various nonlinear control strategies have been developed based on the Lyapunov theory, optimal control, and predictive control. There are currently various research projects applying these tools to a wide range of applications including vehicles, smart structures with piezoelectric actuators and sensors and shape memory alloy wires, robot position and force control, extrusion, and welding.

Research areas in robotics include sensor fusion, assembly sequence planning, dexterous manipulation, teleoperated and variably autonomous systems, distributed control architectures, and their applications to inspection, maintenance, and servicing operations in hazardous environments. Extensive experimental and computational facilities are available in the New York State Center for Automation Technologies.

In computer-aided design, research is focused on the front end of the manufacturing process, namely product development. The goal is to understand and develop computer-based systems to support initial conceptual design, feature-based design, geometric modeling, and rapid prototyping.
Electric Power and Power Electronics

Current research is concentrated in five principal areas: electric and magnetic field computation, electrical transients and switching technology, dielectrics and insulation systems, power system analysis and optimization, and semiconductor power electronics.

The design of equipment to minimize losses, achieve compaction, or better utilize material frequently requires a sound knowledge of the electric and magnetic field configurations involved. Several projects in the recent past have adapted finite element methods to the solution of current problems in large machines. A new approach to digital field computations is being devised, based on techniques used to solve large network problems. The objective is to develop a more efficient, computationally conservative method. In today’s energy-scarce world, there is a great emphasis on building more efficient electrical equipment. Projects are under way in the magnetic fields area to better understand the mechanism of electrical losses in rotating machinery and power transformers, with the ultimate goal of reducing these losses.

Of current interest are electric transients initiated by the switching of power plant auxiliaries and capacitor banks, especially by vacuum switching devices. The modeling of transients in transformer structures could also provide insight into the problems of both design and operation. The techniques being developed are finding application in new areas such as superconducting magnetic energy storage (SMES) and fault current limiting devices. This area of endeavor also includes the fundamental processes of switching large currents and the attendant system interactions.

An electrical insulation system, be it solid, liquid, gaseous, or a combination of these, is an essential part of all power equipment. Current research seeks to better understand the fundamental behavior of insulation under a variety of operating conditions and to develop diagnostic instrumentation. This involves experimentation and computer modeling in the areas of discharge physics, electrostatic phenomena, and high-voltage technology.

Optimization theory is used in the design of electric power systems to obtain high efficiency at minimum cost, particularly for systems that involve distributed generation. This has been extended to include the development of intelligent protective relaying using the department’s system simulator and Electromagnetic Transient Program (EMTP) studies.

With the development of innovative energy sources such as advanced electric machines, fuel cells, and solar photovoltaics, power electronic systems are playing an ever-increasing role at both the source and the load. Issues of power quality and electromagnetic interference (EMI) need to be addressed through careful circuit design, circuit board layout, and EMI resistant communications. Rensselaer has identified this growing area of interest and is currently investigating future solutions to these challenging problems.

With the continual improvement of power semiconductor devices over the last thirty years, it is now possible to convert electrical energy from one form to another efficiently and accurately. Work in this multidisciplinary field requires an understanding of semiconductor devices, circuit theory, signal analysis, analog and digital control, magnetics, and heat transfer. At Rensselaer, these fields are applied to electronic energy conversion and motion control for the electric power and industrial automation industries. Current interests include propulsion systems for electric vehicles, generation systems for wind turbines, the use of artificial intelligence (fuzzy logic, genetic algorithms, and neural networks) in the design and control of electric power conversion and electric machines, and the adaptive control of electric machines.

Microelectronics and Photonics Technology

Advanced study and research includes semiconductor devices for power and high-frequency applications, fabrication of novel semiconductor materials and device structures, and the use and development of computer tools for microelectronics design. Research in association with the Center for Advanced Interconnect...
Sciences and Technology (CAIST) focuses on overcoming the strong limits interconnects pose for future developments in VLSI technology.

An extensive clean room in the Center for Integrated Electronics (CIE) is equipped for fabricating silicon-based devices, integrated circuits, and a full complement of equipment for compound semiconductor device processing. Activities in this area have been focused on novel device technology and process development, advanced interconnect processing, and the fabrication of micromechanical structures.

The microelectronics group has several specialized laboratories equipped to meet industrial standards for advanced research techniques. The electronic materials laboratory includes several state-of-the-art bulk crystal growth systems, wafer slicing and chemical mechanical polishing facilities, liquid phase epitaxy system for multilayer hetero-epitaxy growth, and cold wall epitaxial reactors for the growth of single crystal III-V and II-VI semiconductors. Diagnostic equipment available includes a scanning electron microscope with energy dispersive X-ray analysis, a double crystal X-ray diffractometer, a Fourier transform IR spectrometer, a photoluminescence system with visible and UV excitation, a spectroscopic ellipsometer, and a Hall-effect measurement system.

The high-voltage power device laboratory has equipment that can measure semiconductor power devices in wafer and package form up to 5000 V and 25 A. The equipment includes a Sony/Tektronix 370A curve tracer, an HP 4155 parameter analyzer with a high power module, a Velonex High Power Pulse Generator Model 350, a custom high-voltage rectifier and IGBT switching circuits, a 500 MHz digitizing oscilloscope, a Delta 9023 furnace, and a manual probe station with a high-temperature controller and chuck for device testing.

The semiconductor device characterization laboratories are equipped for carrying out comprehensive electrical characterization of semiconductor devices. Automated measurement systems are available for CV and IV measurements and deep level transient spectroscopy. Facilities are available for cryogenic measurements of semiconductor and superconducting devices at liquid nitrogen and helium temperatures. Additional specialized instrumentation has been developed for analyzing the quantum efficiency and spectral response of solar cells and photoconductive materials, and automated reflectance, electoreflectance, and photoreflectance for the characterization of semiconductor surfaces and quantum layers. Also available is a wide-band 35 GHz microwave setup for contactless measurement of electric resistivity, mobility, and excess carrier lifetime in epitaxial layers or bulk wafers. A full complement of microwave equipment is available for high frequency testing, including HP 8510 and 8410 network analyzers, frequency counters, probe stations, and an automated multiprobe system for on-wafer time-domain measurements.

Within the ECSE Department and the Center for Integrated Electronics are numerous Sun workstations with a variety of commercial design and simulation software, presently including Cadence, Mentor, TMA, and Hewlett-Packard software suites. Research programs developing supplemental design tools for modeling integrated circuits, devices, processes, and interconnects have provided unique supplemental capabilities.
Plasma Engineering and Electromagnetics

Plasma engineering and electromagnetics have played fundamental roles in electrical engineering throughout the history of this discipline. Research at Rensselaer in recent years has centered on two general areas—analysis of electromagnetic fields and characterization of plasma media. Project areas include diagnostics for fusion plasmas based on the interaction between energetic particle beams and plasmas, the application of finite element methods to microwave heating of a variety of materials, antenna design, low temperature plasma modification of materials, magnetic levitation, and electric vehicles. Additional microwave projects are described in the section above.

High-temperature plasma research is crucial to the development of a controlled thermonuclear fusion energy source. Rensselaer’s Plasma Dynamics Laboratory has a very active research program on the development of particle beam diagnostic systems for magnetically confined plasma experiments. Specific diagnostic techniques are developed and tested on relatively small-scale experiments in the on-campus laboratory. Techniques are then scaled up and applied on major confinement experiments located at other U.S. universities (e.g., the Universities of Texas and Wisconsin), at U.S. national laboratories (e.g., Oak Ridge National Lab and Lawrence Livermore National Lab), and foreign institutions (e.g., the Japanese National Institute for Fusion Science).

Electromagnetics remains one of the richest sources of problems and opportunities for electrical engineers. In recent years, the availability of powerful analysis tools, such as those based on finite element methods, has greatly enhanced the ability to exploit electromagnetic phenomena for the greater good of society. Issues associated with high power microwave antenna design, material properties assessment for microwave heating applications, noise in electric vehicle design, and processing of waste materials have been addressed.

Faculty*

Professors
Bhat, I.—Ph.D. (Rensselaer Polytechnic Institute); solid state, electronic materials.
Chow, J.H.—P.E., Ph.D. (University of Illinois); large-scale system modeling, multivariable control systems.
Chow, T.P.—Ph.D. (Rensselaer Polytechnic Institute); semiconductor device physics and processing technology, integrated circuits.
Connor, K.A.—Ph.D. (Polytechnic Institute of New York); electromagnetic theory, wave propagation, plasmas for fusion research and industrial applications, finite element methods.
Degeneff, R.C.—P.E., D.Eng. (Rensselaer Polytechnic Institute); transient voltages in electrical machines and transformers, HVDC system design and electric utility system planning.
Desrochers, A.A.—Ph.D. (Purdue University); discrete event dynamic systems, robotics, automated manufacturing systems control.
Gerhardt, L.A.—Ph.D. (State University of New York, Buffalo); communication systems, digital voice and image processing, adaptive systems and pattern recognition, integrated manufacturing.
Gutmann, R.J.—Ph.D. (Rensselaer Polytechnic Institute); solid-state devices, microwave techniques, and interconnection technology.
Jennings, W.C.—Ph.D. (Rensselaer Polytechnic Institute); plasma diagnostics, electronics manufacturing, multimedia educational materials.
McDonald, J.F.—Ph.D. (Yale University); communication theory, coding and switching theory, computer architecture, integrated circuit design, high frequency packaging, digital signal processing.
Nagy, G.—Ph.D. (Cornell University); pattern recognition, document-image analysis, optical character recognition, geometric computation, computer-mediated learning, computer vision.

* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2003 Board of Trustees meeting.
Nelson, J.K.—C.Eng., Ph.D. (University of London); dielectrics and insulation systems, computer-based diagnostics, electrostatic phenomena.

Pearlman, W.A.—Ph.D. (Stanford University); information theory and source coding; image, video, and audio compression; digital image and signal processing.

Roysam, B.—D.Sc. (Washington University); intelligent imaging at low SNR, parallel computation, biomedical applications.

Salon, S.J.—P.Eng., Ph.D. (University of Pittsburgh); machine design, system component modeling and simulation.

Sanderson, A.C.—Ph.D. (Carnegie Mellon University); robotics, knowledge-based systems, computer vision.

Schubert, E.F.—Ph.D. (University of Stuttgart); compound semiconductor devices and materials, light emitting diodes, heterobipolar transistors, semiconductor device physics, solid state lighting.

Shur, M.S.—D.Sc. (Ioffe Institute); semiconductor materials and devices, integrated circuit simulation, characterization and design.

Tien, J.M.—Ph.D. (Massachusetts Institute of Technology); systems modeling, queuing theory, public policy and decision analysis, computer performance evaluation, information systems, expert systems, computational cybernetics.

Vastola, K.S.—Ph.D. (University of Illinois); computer and communication networks.

Wen, J.T.—Ph.D. (Rensselaer Polytechnic Institute); nonlinear control, robot control, flexible structures control, deformation processes control.

Woods, J.W.—Ph.D. (Massachusetts Institute of Technology); digital signal processing, image processing, digital image and video compression.

Wozny, M.J.—Ph.D. (University of Arizona); computer graphics, computer-aided design, digital simulation, rapid prototyping systems.

Zhang, X.-C.—Ph.D. (Brown University); ultrashort optical pulse spectroscopy, terahertz lasers.

Associate Professors

Franklin, W.R.—Ph.D. (Harvard University); computational geometry, graphics and CAD applications, large geometric databases, geographic information systems, terrain visibility and compression.

Kalyanaraman, S.—Ph.D. (Ohio State University); ATM and Internet traffic management, multimedia networking, IP telephony, performance analysis, Internet pricing.

LeCoz, Y.L.—Ph.D. (Massachusetts Institute of Technology); numerical methods, random-walk algorithms for thermal and electromagnetic analysis of IC interconnects, quantum theory of semiconductor heterojunctions.

Saulnier, G.J.—Ph.D. (Rensselaer Polytechnic Institute); circuits and electronics, communication systems, digital signal processing.

Schoch, P.M.—Ph.D. (Rensselaer Polytechnic Institute); plasma diagnostics, instrumentation, engineering education.

Stephanou, H.E.—Ph.D. (Purdue University); multifingered robot hands, machine intelligence, neural networks, sensor fusion.

Sun, J.—Ph.D. (University of Paderborn); power electronics and energy systems.

Assistant Professors

Abouzeid, A.A.—Ph.D. (University of Washington); packet networks.

Arcak, M.—Ph.D. (University of California, Santa Barbara); design and analysis of nonlinear control systems, adaptive control, applications to mechanical systems.
Dutta, P.S.—Ph.D. (Indian Institute of Science); compound semiconductor materials and devices, crystal growth and substrate engineering, semiconductor quantum dots and nano-particles, photovoltaics, optoelectronics and microelectronics technologies.

Huang, W.—Ph.D. (Carnegie Mellon University); robotic manipulation, mobile robotics.

Ji, Q.—Ph.D. (University of Washington); computer vision, image processing, pattern recognition, robotics.

Kar, K.—Ph.D. (University of Maryland); routing and traffic management in computer networks, congestion control and fair resource allocation, ad-hoc and sensor networks.

Mercado, A.V.—Ph.D. (University of Maryland); wireless communication.

Radke, R.J.—Ph.D. (Princeton University); image and video processing.

Sikdar, B.—Ph.D. (Rensselaer Polytechnic Institute); computer networks.

Yazici, B.—Ph.D. (Purdue University); inverse problems in biomedical imaging, tomography, diffuse optical tomography, biomedical optics, free space optical communications, ultrasonics, statistical pattern recognition theory and application.

Zhang, T.—Ph.D. (University of Minnesota); VLSI signal processing, error-correcting coding.

Clinical Professors

Carlson, A.B.—Ph.D. (Stanford University); communication systems, circuits and electronics, educational methods, social context of engineering.

Murtuza, S.—Ph.D. (Purdue University); engineering education.

Research Professor

Kliman, G.B.—Ph.D. (Massachusetts Institute of Technology); electric motors and drives.

Research Associate Professors

Lu, J.—Ph.D. (Technical University of Munich); electronic materials.

Millard, D.L.—Ph.D. (Rensselaer Polytechnic Institute); microelectronics design and manufacturing, nondestructive testing and evaluation, instrumentation systems, multimedia development.

Research Assistant Professors

Azimi-Sadjadi, B.—Ph.D. (University of Maryland); stochastic systems, control, communication.

Bonneau, R.J.—Ph.D. (Columbia University); wireless communication, image and video compression, radar tracking and imaging.

Demers, D.—Ph.D. (Rensselaer Polytechnic Institute); fusion plasmas, plasma diagnostics.

Gessmann, T.—Ph.D. (University of Stuttgart); condensed matter, wide bandgap semiconductors.

Adjunct Faculty

Berry, G.T.—P.E., M.E. (Harvard University); power system operation.

Blake, J.P.—M.S. (Union College); software engineering.

Bonissone, P.P.—Ph.D. (University of California, Berkeley); theory of fuzzy sets.

Bonner, S.J.—Ph.D. (Rensselaer Polytechnic Institute); robotics.

Caola, R.J.—M.E. (Rensselaer Polytechnic Institute); protective relaying.

Citriniti, T.D.—M.S. (Rensselaer Polytechnic Institute); computer graphics and visualization.

Goldschmidt, D.E.—M.S. (Rensselaer Polytechnic Institute); software engineering.

Hershey, J.E.—Ph.D. (Oklahoma State University); communication systems, cryptography, intellectual property management.

Johansen, R.B.—M.S.E. (Union College); computer languages, array signal processing, precision control of micromechanical systems.
Kraft, R.P.—Ph.D. (Rensselaer Polytechnic Institute); digital control and manufacturing systems.

Marwali, M.K.—Ph.D. (Illinois Institute of Technology); power transmission and generators.

Merrill, H.M.—P.E., Ph.D. (Massachusetts Institute of Technology); economic operation, planning and control of power systems.

Michael, J.D.—Ph.D. (Rensselaer Polytechnic Institute); plasma diagnostics, instrumentation, low pressure discharge modeling, laser diagnostics, novel light sources.

Prabhakara, E.S.—Ph.D. (Purdue University); power systems.

Reichard, M.L.—P.E., M.E. (Pennsylvania State University); industrial power systems.

Sivasubramanian, K.—Ph.D. (Rensselaer Polytechnic Institute); electromagnetics, machines.

Spang, H.A., III—D.Eng. (Yale University); control systems, theory and implementation.

Thomenius, K.D.—Ph.D. (Rutgers University); imaging science.

Torrey, D.A.—P.E., Ph.D. (Massachusetts Institute of Technology); semiconductor power electronics, electric machinery.

Yuksel, M.—Ph.D. (Rensselaer Polytechnic Institute); computer networks, Internet pricing, routing in wireless networks, large-scale network simulation.

Emeritus Faculty

Borrego, J.M.—P.E., Sc.D. (Massachusetts Institute of Technology); semiconductor device physics and characterization, solar cells, application of microwaves.

Close, C.M.—Ph.D. (Rensselaer Polytechnic Institute); network analysis and synthesis, control systems.

Das, P.K.—Ph.D. (University of Calcutta); microwave acoustics, solid-state devices, integrated circuits.

DiCesare, F.—Ph.D. (Carnegie Mellon University); discrete event systems, Petri net theory and applications manufacturing automation and integration, traffic control.

Frederick, D.K.—Ph.D. (Stanford University); automatic control, process modeling and control, computer simulation.

Ghandhi, S.K.—Ph.D. (University of Illinois); solid-state materials and devices, integrated circuits, device technology and electronic circuits.

Greenwood, A.N.—Ph.D. (University of Leeds); electrical transients, interrupting devices.

Hickok, R.L., Jr.—Ph.D. (Rensselaer Polytechnic Institute); gaseous electronics, plasmas, energy conversion.

Kelley, R.B.—Ph.D. (University of California, Los Angeles); methods to give machines smart behaviors, sensor-based automation/robotic systems, teaching methods.

Rose, K.—Ph.D. (University of Illinois); semiconductor and superconductor materials and processing, VLSI design and testing.

Saridis, G.N.—Ph.D. (Purdue University); intelligent control systems, pattern recognition, computer systems, robotics, prostheses.

Savic, M.—Eng.Sc.D. (University of Belgrade); signal processing, biomedical electronics, electronics.

Saxena, A.N.—Ph.D. (Stanford University); solid-state materials, devices, integrated circuits, and advanced technologies.

Senior Research Engineer

Schatz, J.G.—A.A.S. (Hudson Valley Community College); vacuum and electronic systems.
Undergraduate Programs

Objectives of the Undergraduate Curriculum
The objectives of the programs in Electrical, Computer, and Systems Engineering are:

- To provide students with a foundation in mathematics, science, and engineering
- To provide students with the technical background needed for the practice of or for graduate study in, Electrical, Computer and Systems, or Electric Power Engineering. This background differs between the programs by having:
 a. an emphasis on applied electro-physics, including electronics, electromagnetics and semiconductors, for Electrical Engineering, or
 b. an emphasis on applied computer science, including data structures, computer architecture and software engineering, for Computer and Systems Engineering, or
 c. an emphasis on electric power systems, including electromagnetics, electromechanics, and power semiconductor applications for Electric Power Engineering
- To prepare students to function in a professional environment, including the development of communication, leadership, and teamwork skills, the awareness of professional and ethical responsibility, and the preparation for life-long learning
- To provide students with a broad education including exposure to the humanities and social sciences
- To provide a learning environment that includes innovative pedagogical approaches and the access to current instrumentation and software tools

Baccalaureate Programs
Within this department, students may obtain the Bachelor of Science degree in three disciplines, electrical engineering, computer and systems engineering, or electric power engineering. The department also encourages students to consider graduate study in any of these three curricula. A professional program option, which leads to both the B.S. and M.Eng. degree, is also open to qualified students.

Engineering design is introduced and developed in the required courses ENGR-2050, ENGR-2350, and ECSE-2610, and in various electives. These courses set the stage for capstone design experience in the design elective, a writing-intensive course that satisfies the Institute writing requirements.

The following program descriptions indicate course schedules for students who select any of the three ECSE disciplines as their chosen field of study. However, various arrangements can be made with the help of an adviser. In all cases, adviser approval of individual plans of study is necessary to ensure satisfaction of departmental and accreditation requirements. The adviser must also approve in writing any exceptions to the courses specified in the descriptions below.

All three of the ECSE curricula require completion of a minimum of 128 credit hours. Within all of these program areas, the Pass/No Credit option may be used only for humanities and social sciences electives (up to a maximum of six credits) or free electives. All other courses used to satisfy the degree requirements must be taken on a graded basis.
Electrical Engineering Curriculum

Traditionally the largest and most diverse in all of engineering, this curriculum offers courses with various degrees of emphasis on theory, design, experimental work, and computer simulation. Subject matter ranges from semiconductors and electromagnetics to circuits and electronics, and to large-scale control, computer, communication, and information processing systems.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1100</td>
<td>Intro. to Engineering Analysis..............4</td>
<td>ENGR-1200</td>
<td>Eng. Graphics and CAD (^1)1</td>
</tr>
<tr>
<td>ENGR-1310</td>
<td>Intro. to Eng. Electronics (^2) (^3) (^4)</td>
<td>MATH-1020</td>
<td>Calculus II1</td>
</tr>
<tr>
<td>CHEM-1300</td>
<td>Chemistry Principles for Engineers4</td>
<td>CSCI-1100</td>
<td>Computer Science (^1)4</td>
</tr>
<tr>
<td>MATH-1010</td>
<td>Calculus I4</td>
<td>PHYS-1100</td>
<td>Physics I ...4</td>
</tr>
<tr>
<td></td>
<td>Hum. or Soc. Sci. Elective4</td>
<td></td>
<td>Hum. or Soc. Sci. Elective4</td>
</tr>
</tbody>
</table>

\(^1\) May be taken either term.

\(^2\) May be replaced by ENGR-1300.

\(^3\) Students entering this program in the fourth term should take CSCI-1100 in the spring, deferring ECSE-2610.

\(^4\) The free electives must total at least 12 credits.

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2050</td>
<td>Intro. to Engineering Design4</td>
<td>ENGR-2350</td>
<td>Embedded Control4</td>
</tr>
<tr>
<td>MATH-2400</td>
<td>Intro. to Differential Equations4</td>
<td>ECSE-2010</td>
<td>Electric Circuits4</td>
</tr>
<tr>
<td>PHYS-1200</td>
<td>Physics II4</td>
<td>ECSE-2610</td>
<td>Computer Components and Operations4</td>
</tr>
<tr>
<td></td>
<td>Hum. or Soc. Sci. Elective4</td>
<td></td>
<td>Hum. or Soc. Sci. Elective4</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE-2050</td>
<td>Analog Electronics or</td>
<td>ECSE-2100</td>
<td>Fields and Waves I4</td>
</tr>
<tr>
<td>ECSE-2060</td>
<td>Digital Electronics4</td>
<td>ECSE-2210</td>
<td>Microelectronics Technology4</td>
</tr>
<tr>
<td>ECSE-2410</td>
<td>Signals and Systems4</td>
<td></td>
<td>Applied Mathematics Elective4</td>
</tr>
<tr>
<td></td>
<td>Multidisciplinary Elective (^1)4</td>
<td></td>
<td>Free Elective (^2)3–4</td>
</tr>
<tr>
<td></td>
<td>Hum. or Soc. Sci. Elective (^1)4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Students entering this program in the fourth term should take CSCI-1100 in the spring, deferring ECSE-2610.

\(^2\) The free electives must total at least 12 credits.

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE-4500</td>
<td>Probability for Engineering</td>
</tr>
<tr>
<td></td>
<td>Applications (^1)4</td>
</tr>
<tr>
<td></td>
<td>Professional Development II (^2) (^3) (^4) (^5)</td>
</tr>
<tr>
<td>ENGR-4010</td>
<td>Professional Development III1</td>
</tr>
<tr>
<td></td>
<td>Laboratory Elective3</td>
</tr>
<tr>
<td></td>
<td>Design Elective3</td>
</tr>
<tr>
<td></td>
<td>Restricted Electives (3)9</td>
</tr>
<tr>
<td></td>
<td>Free Electives (2 or 3) (^4)8–9</td>
</tr>
</tbody>
</table>

\(^1\) This course will be fulfilled from a list published at the start of each semester.

\(^2\) May be taken in the third year.
Humanities or Social Sciences Electives
In this area, electives are based on the Institute and School of Engineering requirements. Additionally, at least one course must be selected from the list posted on the ECSE home page. Students are urged to elect humanities and social science sequences through which they will obtain adequate breadth and depth in subject areas. Students desiring minors in Humanities and Social Sciences must consult the school or department in which the courses are offered to obtain further information and specific requirements.

Restricted Electives
Any course with the designation EPOW or ECSE. Additionally, one restricted elective may be a course numbered ENGR-2xxx or ENGR-4xxx.

<table>
<thead>
<tr>
<th>Laboratory Electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-4710</td>
<td>Advanced Manufacturing Laboratory I (Fall)</td>
</tr>
<tr>
<td>EPOW-4030</td>
<td>Electric Power Engineering Laboratory (Spring)</td>
</tr>
<tr>
<td>ECSE-4220</td>
<td>VLSI Design (Fall)</td>
</tr>
<tr>
<td>ECSE-4690</td>
<td>Experimental Networking (Fall)</td>
</tr>
<tr>
<td>ECSE-4760</td>
<td>Computer Applications Laboratory (Spring)</td>
</tr>
<tr>
<td>ECSE-4770</td>
<td>Computer Hardware Design (Fall)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE-4120</td>
<td>Electronic Engineering Design (Spring)</td>
</tr>
<tr>
<td>ECSE-4180</td>
<td>Microwave Circuit Design (Spring)</td>
</tr>
<tr>
<td>ECSE-4260</td>
<td>Physical Design in Microelectronics (Spring)</td>
</tr>
<tr>
<td>ECSE-4560</td>
<td>Signal Processing Design (Spring)</td>
</tr>
<tr>
<td>ECSE-4980</td>
<td>Senior Design Project (Fall or Spring)</td>
</tr>
<tr>
<td>ECSE-6700</td>
<td>Advanced Computer Hardware Design (Spring)</td>
</tr>
<tr>
<td>ECSE-4961</td>
<td>ECSE Design (Fall and Spring)</td>
</tr>
<tr>
<td>ECSE-4962</td>
<td>Control Systems Design (Spring)</td>
</tr>
<tr>
<td>ENGR-4060</td>
<td>Inventors Studio (Fall and Spring)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multidisciplinary Electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1600</td>
<td>Materials Science for Engineers</td>
</tr>
<tr>
<td>ENGR-2090</td>
<td>Engineering Dynamics</td>
</tr>
<tr>
<td>ENGR-2250</td>
<td>Thermal and Fluids Engineering I</td>
</tr>
<tr>
<td>ENGR-2530</td>
<td>Strength of Materials</td>
</tr>
</tbody>
</table>

Applied Mathematics Electives
- CSCI-2400 Models of Computation
- CSCI-4020 Computer Algorithms
- CSCI-4260/MATH-4150 Graph Theory
- MATH-2010 Multivariable Calculus and Matrix Algebra
- MATH-2800 Introduction to Discrete Structures
- MATH-4700 Foundations of Applied Mathematics

Concentrations
Two ECSE 4000/6000-level electives, not including the design elective, must form a Technical Concentration.
Computer and Systems Engineering Curriculum

This field is one of the fastest-growing branches of engineering. Strong course sequences in software, hardware, and systems engineering are available. Students consider the digital computer as a system in itself, as a tool for modeling and design, and as an online element within a real-time system. There is the flexibility to study in depth automatic control, communications, or information processing, in addition to computer software, systems, and hardware.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1200</td>
<td>Eng. Graphics and CAD 1</td>
<td>ENGR-1100</td>
<td>Intro. to Engineering Analysis</td>
</tr>
<tr>
<td>CHEM-1300</td>
<td>Chemistry Principles for Engineers 2</td>
<td>ENGR-1310</td>
<td>Intro. to Eng. Electronics 2</td>
</tr>
<tr>
<td>MATH-1010</td>
<td>Calculus I</td>
<td>MATH-1020</td>
<td>Calculus II</td>
</tr>
<tr>
<td>CSCI-1100</td>
<td>Computer Science I 3</td>
<td>CSCI-1200</td>
<td>Computer Science II 3</td>
</tr>
<tr>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2350</td>
<td>Embedded Control 4</td>
<td>ECSE-2660</td>
<td>Computer Architecture, Networks, and Operating Systems</td>
</tr>
<tr>
<td>ECSE-2610</td>
<td>Computer Components and Operations 3</td>
<td>MATH-2400</td>
<td>Intro. to Differential Equations</td>
</tr>
<tr>
<td>CSCI-2300</td>
<td>Data Structures & Algorithms 4</td>
<td>PHYS-1200</td>
<td>Physics II</td>
</tr>
<tr>
<td>PHYS-1100</td>
<td>Physics I</td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2050</td>
<td>Intro. to Engineering Design</td>
<td>ECSE-2410</td>
<td>Signals and Systems</td>
</tr>
<tr>
<td>ECSE-2010</td>
<td>Electric Circuits</td>
<td>Applied Mathematics Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Multidisciplinary Elective 1</td>
<td>Free Elective 14</td>
<td>3–4</td>
</tr>
<tr>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
<td></td>
<td>Hum. or Soc. Sci. Elective</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-4010</td>
</tr>
<tr>
<td>CSCI-4500</td>
</tr>
<tr>
<td>ECSE-4500</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

1 May be taken either term
2 May be replaced by ENGR-1300
3 Students entering this program in the fourth term should take CSCI-1100 and ENGR-2350 in the spring deferring ECSE-2610, ECSE-2660, CSCI-1200, and CSCI-2300.
4 The free electives must total at least 12 credits.
5 This course will be fulfilled from a list published at the start of each semester.
6 May be taken in the third year.
Humanities or Social Sciences Electives
In this area, electives are based on the Institute and School of Engineering requirements. Additionally, at least one course must be selected from the list posted on the ECSE home page. Students are urged to elect humanities and social science sequences through which they will obtain adequate breadth and depth in subject areas. Students desiring minors in Humanities and Social Sciences must consult the school or department in which the courses are offered to obtain further information and specific requirements.

Restricted Electives
Any course with the designation ECSE or CSCI. Additionally, one restricted elective may be a course numbered ENGR-2xxx or ENGR-4xxx.

Software Engineering Electives
- ECSE-4690 Experimental Networking (Fall)
- ECSE-4750 Computer Graphics (Fall or Spring)
- ECSE-6770 Software Engineering I (Fall)
- CSCI-4380 Database Systems (Fall or Spring)
- CSCI-4440 Software Design and Documentation (Fall or Spring)
- CSCI-4600 The Human-Computer Interface (Spring)

Multidisciplinary Electives
- ENGR-1600 Materials Science for Engineers
- ENGR-2090 Engineering Dynamics
- ENGR-2250 Thermal and Fluids Engineering
- ENGR-2530 Strength of Materials

Applied Mathematics Electives
- CSCI-2400 Models of Computation
- CSCI-4020 Computer Algorithms
- CSCI-4260/MATH-4150 Graph Theory
- MATH-2010 Multivariable Calculus and Matrix Algebra
- MATH-2800 Introduction to Discrete Structures
- MATH-4700 Foundations of Applied Mathematics

Design Electives
- ECSE-4962 Control Systems Design (Spring)
- ECSE-4960 Signal Processing Design (Spring)
- ECSE-4790 Microprocessor Systems (Fall)
- ECSE-4980 Senior Design Project (Fall or Spring)
- ECSE-6700 Advanced Computer Hardware Design (Spring)
- ECSE-4961 ECSE Design (Fall and Spring)
- ENGR-4060 Inventors Studio (Fall and Spring)

Concentrations
Two ECSE 4000/6000-level electives, not including the design elective, must form a Technical Concentration.

Electric Power Engineering Curriculum
The traditional place for electric power studies in a university is in the electrical engineering program, where the power option is offered as one of several concentrations. At Rensselaer, electric power is a separate degree program with its own faculty. It maintains strong ties to industry and is dedicated to preparing students for careers in power generation, delivery, or equipment; power electronics applied to drives and power conditioning; or at the intersection of electric power, economics, and management.

The vital role that energy plays in our lives has become increasingly evident in recent years. Society as we know it cannot function without an abundant supply of energy. It turns the wheels of industry and agriculture, it provides transportation, it supplies many of our domestic and recreational needs. There is continuing controversy over the primary source of the energy, but there is widespread agreement that electrical energy, because of its ease of transformation to and from other energy forms and its ease of transmission, distribution, and utilization, is vital. It is expected that electrical energy will constitute an increasing portion of the total energy used.

To keep pace with expanding needs through the development of ever more sophisticated systems requires the technical talent, scientific knowledge, mature judgment, and visionary innovation of the best engi-
neering minds of this generation. The electric power engineering program at Rensselaer is dedicated to meeting this need in generation, delivery, and utilization in an increasingly competitive environment. Study at Rensselaer is supported by the power industry, which the program serves. In particular, the ECSE Department operates a Grainger Scholar program under the auspices of the Grainger Foundation for well-qualified U.S. students.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-2400 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM-1300 Chemistry Principles for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-1100 Intro. to Engineering Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-1200 Eng. Graphics and CAD 1</td>
<td>1</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective 1</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-1020 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-1600 Materials Science for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>PHYS-1160 Physics I</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-1300 Engineering Processes 2</td>
<td>1</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective 1</td>
<td>4</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-2400 Intro. to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>PHYS-1200 Physics II</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-2050 Intro. to Engineering Design</td>
<td>4</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective 1</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE-2010 Electric Circuits</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-4050 Modeling and Control of Dynamic Systems</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-2600 Modeling and Analysis of Uncertainty</td>
<td>3</td>
</tr>
<tr>
<td>CSCI-1190 Beginning C Programming for Engineers</td>
<td>1</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective 1</td>
<td>4</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-4300 Electronic Instrumentation</td>
<td>4</td>
</tr>
<tr>
<td>ECSE-2100 Fields and Waves I</td>
<td>4</td>
</tr>
<tr>
<td>ENGR-2250 Thermal and Fluids Engineering I</td>
<td>4</td>
</tr>
<tr>
<td>EPOW-4010 Power Engineering Fundamentals</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE-2410 Signals and Systems</td>
<td>4</td>
</tr>
<tr>
<td>EPOW-4020 Electromechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR-2350 Embedded Control</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td>Professional Development II 6</td>
<td>2</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPOW-4080 Semiconductor Power Electronics</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective 4</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPOW-4850 Electric Power Eng. Design</td>
<td>3</td>
</tr>
<tr>
<td>EPOW-4030 EPE Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Elective 4</td>
<td>3</td>
</tr>
<tr>
<td>ENGR-4010 Professional Development III 4</td>
<td>1</td>
</tr>
</tbody>
</table>

1. There should be a total of 20 credit hours of H&SS electives.
2. These required courses may be taken in any order.
3. May be replaced by ENGR-1310.
4. Any course in engineering or science that is at the 2000 level or higher.
5. Can be taken in either semester during senior year.
6. This course will be fulfilled from a list published at the start of each semester.
Humanities or Social Sciences Electives
In this area, electives are based on the Institute and School of Engineering requirements. Additionally, at least one course must be selected from the list posted on the ECSE home page. Students are urged to elect humanities and social science sequences through which they will obtain adequate breadth and depth in subject areas. Students desiring minors in Humanities and Social Sciences must consult the school or department in which the courses are offered to obtain further information and specific requirements.

Concentration in Power Electronics Systems
The concentration in Power Electronics Systems is open to all students in Electric Power Engineering. Fulfillment of the concentration will be recognized by the department and consists of both the following courses:

- EPOW-4080 Semiconductor Power Electronics Systems
- EPOW-4850 Electric Power Engineering Design (with Power Electronics emphasis)

and one of the following:

- ECSE-4250 Integrated Circuit Processes and Design
- ECSE-4290 Electronic Packaging
- MANE-4490 Mechatronics
- MANE-4250 Mechatronic System Design

Minor Programs
Minors in any of the three ECSE curricula are open to undergraduates not majoring in any of these disciplines. The corresponding curriculum chair must approve all minors.

In Electrical Engineering, the minor consists of:

- ECSE-2010 Electric Circuits 4
- ECSE-2410 Signals and Systems 4
- ECSE-2610 Computer Components and Operations .. 4
- Approved ECSE elective 3–4

In Computer and Systems Engineering, the minor consists of:

- ECSE-2010 Electric Circuits 4
- ECSE-2610 Computer Components and Operations .. 4
- ECSE-2660 Computer Architecture, Networks, and Operating Systems 4
- Approved ECSE elective 3–4

In Electric Power Engineering, the minor consists of:

- ECSE-2010 Electric Circuits 4
- ECSE-2610 Computer Components and Operations .. 4
- EPOW-4020 Electromechanics 4
- EPOW-4080 Semiconductor Power Electronics 4

Dual Major Programs
These programs lead to a single baccalaureate degree embracing two fields. Special programs that can be completed in eight terms have been devised for:

- Electrical engineering and applied physics
- Electrical engineering and computer and systems engineering
- Electrical engineering and electric power engineering
- Computer and systems engineering and computer science

Detailed information about these programs is available in the department curriculum office.
Professional Programs
ECSE students following the Electric Power Engineering Program may follow this option to complete both the B.S. and M.S. degrees. In this case, the fourth year follows closely the outline for the last year of the baccalaureate program. However, in choosing electives the student should bear in mind that the following courses must be taken at some time prior to or during the professional program:

ENGR-4760 Engineering Economics
Mathematics elective at 4000 level or higher

The following 4000-level courses (or their equivalents) can be used to satisfy the degree’s mathematics course requirement:
MATH-4600 Advanced Calculus
MATH-4300 Intro. to Complex Variables: Theory and Applications
MATH-4500 Methods of Partial Differential Equations of Mathematical Physics
MATH-4700 Foundations of Applied Mathematics

The typical curricula for the remainder of the program is as follows:

Fifth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPOW-6810</td>
<td>Power Engineering Analysis3</td>
<td>EPOW-6870</td>
<td>Mechanical Aspects of Electric Power Apparatus3</td>
</tr>
<tr>
<td>EPOW-6870</td>
<td>Selected Power Courses 13</td>
<td>EPOW-6960</td>
<td>Selected Power Courses 13</td>
</tr>
<tr>
<td></td>
<td>Electives ..6</td>
<td>Electives ..6</td>
<td></td>
</tr>
</tbody>
</table>

A student wishing to qualify for a B.S. degree by the end of the first year of professional school studies must complete the humanities and social sciences core requirement during the first year of the professional program.

Special Undergraduate Opportunities
ECSE offers a couple of special programs for highly qualified students. These include:

The Undergraduate Honors program
This program for outstanding undergraduates in electrical engineering or computer and systems engineering introduces research as a professional activity. All participants attend the ECSE Honors Seminar during their sophomore or junior year. Students also participate in at least one research project. An honors faculty adviser is assigned with whom special academic programs are developed that reflect the capabilities and interests of the exceptional student. Applications are accepted during a student’s third semester or thereafter. Forms are available from the department curriculum office.

1 At least two courses must be selected from the following:

EPOW-6820 Power Quality (Spring)
EPOW-6880 Utility as a Business (Spring or Summer)
EPOW-6830 Protective Relaying (Fall; offered on availability of instructor)
EPOW-6840 Power Generation Operation and Control (Spring)

EPOW-6960 Topics in Electric Power Engineering (Spring or Summer)
EPOW-6860 Surge Phenomena in Electric Power Engineering (Fall)
ENVE-4400 Nuclear Power Systems Engineering (Spring)
The Grainger Scholar program
This program is for well-qualified U.S. students in electric power engineering. Through this program, the power industry, under the auspices of the Grainger Foundation, supports study at Rensselaer.

Graduate Programs
The department offers graduate programs leading to the Master of Engineering, Master of Science, Doctor of Philosophy, and Doctor of Engineering in all three of the department curricula. In all cases, particular emphasis is placed on developing a coherent individualized plan of study with the help of a faculty adviser.

Master’s Programs
Both the M.S. and the M.Eng. require 30 credits beyond the bachelor’s degree.

Master of Science
This program is designed to prepare students for research-oriented careers and eventual pursuit of a doctoral degree. A six-credit thesis or project is usually required, but it may be waived for students who can submit a document of previous individual work that demonstrates equivalency in depth and presentation. Waivers are granted by the director of master’s programs and must be replaced with six credit hours of course work.

The M.S. plans of study in electrical engineering and computer and systems engineering must consist of at least 18 credit hours of 6000-level courses and the thesis/project. At least 21 credit hours of ECSE courses must be taken, or up to six of these may be from a related technical area with the approval of the department. Programs that do not include 21 credit hours from ECSE must have prior approval from the director of master’s programs. Students who do not have adequate preparation for their chosen area of specialization may need to take background courses in addition to the 30 credit hour requirement. An information sheet giving the requirements for several areas of specialization is available for all accepted students.

In the electric power engineering curricula, most study and research is of an applied nature, which is recognized in the awarding of the M.Eng. degree. However, courses and research directed more toward basic understanding of physical phenomena, such as the fundamental processes of electrical breakdown in dielectrics, can be pursued. This type of research would lead to the M.S. degree. This avenue also allows students with accredited degrees—not in engineering but perhaps in science—to obtain advanced degrees in the electric power area.

Master of Engineering
This one-year program is designed to prepare graduates for professional careers. Students entering the program typically hold accredited bachelor’s degrees in appropriate branches of engineering. A master’s thesis or project is not required.

The M.Eng. plans of study in electrical engineering and computer and systems engineering consist of at least 18 credit hours in 6000-level courses. In addition, it must include at least 21 credit hours in ECSE courses, or up to six of these may be from a related technical area with the approval of the department. Programs that do not include 21 credit hours from ECSE must have prior approval from the director of master’s programs. Students who do not have adequate preparation for their chosen area of specialization may need to take background courses in addition to the 30 credit hour requirement. An information sheet giving the requirements for several areas of specialization is available for all accepted students.

The electric power engineering M.Eng. degree is a structured program of advanced professional study for the student holding an accredited bachelor’s degree in the field or its equivalent in electrical engineering.
Course listings do not represent requirements except where indicated (see the fifth year requirements listed earlier); they are intended only to guide the student, who is encouraged to develop an individual program in consultation with his or her graduate adviser.

Doctoral Programs

Advanced study and research for a Ph.D. or D.Eng. degree is conducted under the guidance of a thesis adviser representing the department. The student formulates an individual plan of study in consultation with the adviser. The doctoral qualifying examination should be taken prior to completing 15 credit hours beyond the master’s degree. A minimum of 60 credit hours beyond the master’s degree, including a dissertation, is required. The department expects the Institute requirements for candidacy and residency to be satisfied.

In the electric power engineering curricula, most study and research is of an applied nature, which is recognized in the awarding of the D.Eng. degree. However, courses and research directed more toward basic understanding of physical phenomena, such as the fundamental processes of electrical breakdown in dielectrics, can be pursued. This type of research would lead to the Ph.D. degree. This avenue also allows students with accredited degrees—not in engineering but perhaps in science—to obtain advanced degrees in the electric power area.

Special Graduate Opportunities

In collaboration with the various campus centers and other departments, ECSE sponsors master’s and doctoral program options in manufacturing systems and semiconductor technology. Descriptions of these programs are available upon request.

Course Descriptions

Courses directly related to all Electrical, Computer, and Systems Engineering curricula are described in the Course Description section of this catalog under the department codes CSCI, DSES, ECSE, ENVE, EPOW, ITEC, MATH, MATP, MTLE, and PHYS.

Materials Science and Engineering

Chair: David J. Duquette

Undergraduate Advising: Minoru Tomozawa

Graduate Recruiting: Roger N. Wright

Graduate Advising: Christoph Steinbruchel

Department Home Page: http://www.eng.rpi.edu/dept/materials/

Progress in modern technology is often limited by the availability of suitable solid materials. The materials engineer must produce materials to meet the demands of the designers of jet engines and rocket boosters, microelectronic devices, optical components, medical prostheses, and many other products.

The principles that govern the processing and structure of materials to produce optimum mechanical and physical properties and performance are embodied in the materials engineering curriculum. The program is designed to produce engineers and scientists whose degrees represent useful specialization coupled with a broad background in all classes of materials.

Undergraduate students wishing to extend their education can undertake specialized study in a range of fields. These include research in ceramics, polymers, composites, nanostructured materials, high-temper-
ature alloys, solidification, corrosion, deformation processing, welding, high-strength high-modulus mate-
rials, biomaterials, electronic materials, surface and molecular kinetics, glass science, and the origin of
mechanical and physical properties in many different types of materials. Graduate students, in addition
to pursuing classroom courses, conduct research in a variety of areas described below and write their the-
theses based on this research. Extensive laboratories containing modern and sophisticated equipment are
available.

For the student who likes to innovate and who wants to apply knowledge to the real problems of a mod-
ern technological society, materials science and engineering provides a broad range of exciting opportu-
nities.

Research and Innovation Initiatives

Materials Processing
Major research programs include fundamental studies of the solidification process and the effect of solid-
ification under reduced gravity on the formation of dendritic structures, and practically oriented programs
in the extrusion processing of aluminum alloys. In the latter program, studies of the complex interactions
among stress, strain rate, and temperature during forming processes have made it possible to apply advanced
software models to the control of metalworking operations. Studies of powder processing have made possible
the extrusion processing of composite materials, while research on joining processes has led to syn-
ergistic coupling of adhesive bonding and spot welding technology in automotive sheet metal fabrication.
New efforts focused on the synthesis, processing, and properties of nanostructured materials are expand-
ing the capabilities of materials engineering and nanotechnology into additional areas including ceram-
ics, metals, polymers, composites, and biomaterials. Novel applications of carbon nanotubes for device
and chemical applications are under investigation, along with chemical, electrical, and mechanical isola-
tion engineering using nanocomposites.

Materials for Microelectronic Systems
This research concentrates on materials problems associated with the interconnections between inte-
grated circuit elements. Included are the growth of thin films of metals and both polymer and ceramic
dielectric materials, the patterning and etching processes necessary for the fabrication of multilayer devices,
and the planarization processes necessary for successful device fabrication. Of special note is the program
in microelectronics packaging, which addresses the mechanical, electronic, and thermal aspects of device
design and fabrication.

Glasses and Ceramics
Research efforts focus on factors influencing the useful lifetime of glass components and the effect of envi-
ronments, especially aqueous environments, on glass failure. In addition to the conventional applications
such as windows and bottles, glasses are used as optical components such as optical communication fibers.
Specifically, variation of the glass surface structure with time and its influence on glass properties are under
investigation. Another emphasis is the development of nonoxide glasses, primarily those based on fluo-
rides, as the transmitting medium in optical fibers for communications purposes.

High-Performance Composite Materials
These materials are used in industrial and consumer products due to their exceptional stiffness and
strength-to-weight ratios. Applications of composites in the construction industry, such as steel bridge
repairs using graphite-epoxy composites, are growing rapidly. Meanwhile, next generation conceptual
plans for hybrid electric vehicles are using ceramic composite components for gas turbine engines and
thermal recuperators. Composites research activities at Rensselaer include ceramic, metallic, and polymer matrix composites; micromechanics and modeling of both fabrication processes and materials properties; design with new materials; synthesis of new matrix materials; and all aspects of the fabrication and characterization of composites and composite structures. Of special note is the sailplane program, in which students have designed, fabricated, and tested an all-composite glider, which has now been flying for over seven years. A new project, the composite hybrid electric vehicle, has also been initiated and offers numerous opportunities for both graduate and undergraduate participation.

Faculty

Professors

Ajayan, P.M.—Ph.D. (Northwestern University); synthesis, structure, and properties of carbon-based nanostructures and nanocomposites; phase transitions in nanoscale materials; electron microscopy.

Baeslack, W.A. III—Ph.D., P.E. (Rensselaer Polytechnic Institute); physical metallurgy; joining of advanced materials (Dean, School of Engineering)

Duquette, D.J.—Ph.D. (Massachusetts Institute of Technology); environmental and surface effects on the mechanical behavior of metals, corrosion, stress corrosion fatigue (Department Head).

Glicksman, M.E.—Ph.D. (Rensselaer Polytechnic Institute); melting and solidification, transport properties of liquid metals, phase transformation kinetics, metallurgy of superconductors (John Tod Horton Professor of Materials Engineering).

Hudson, J.B.—Ph.D. (Rensselaer Polytechnic Institute); adsorption on solid surfaces, structure and reactivity of solids, physics and chemistry of surfaces, nanocrystal growth.

Messler, R.W., Jr.—Ph.D. (Rensselaer Polytechnic Institute); materials in manufacturing, welding.

Moynihan, C.T.—Ph.D. (Princeton University); ionic transport in glass, infrared transmission in glasses and glass ceramics, thermodynamic properties of glasses.

Nalamasu, O.—Ph.D. (University of British Columbia); electronic and photonic polymers, nanopatterning, micro- and nanofabrication, electronic and photonic devices.

Rajan, K.—Sc.D. (Massachusetts Institute of Technology); electron microscopy, electronic materials, thin films and superlattices.

Siegel, R.W.—Ph.D. (University of Illinois); synthesis, processing, structure, and properties of functional nanostructured materials including metals, ceramics, and composites; biomaterials; atomic-scale defects and diffusion in materials (Robert W. Hunt Professor).

Sternstein, S.S.—Ph.D. (Rensselaer Polytechnic Institute); high-performance composites; physical properties of polymers; rubber elasticity theory; fracture, yielding, and craze formation in glassy polymers and composites, viscoelastic properties; swelling in filled elastomers (William Weightman Walker Professor of Polymer Engineering).

Tomozawa, M.—Ph.D. (University of Pennsylvania); electrical properties of glasses, X-ray and light scattering, phase separation, mechanical properties of glasses.

Wright, R.N.—Sc.D. (Massachusetts Institute of Technology); metal forming and fabrication, mechanical behavior of metals.

Associate Professors

Schadler, L.S.—Ph.D. (University of Pennsylvania); polymer and glass matrix composites, micromechanical behavior, strains and interface properties, micro-Raman spectroscopy, environmental effects.

Steinbruchel, C.—Ph.D. (University of Minnesota); thin films, electronic materials, plasma processing, ion beam and ultra-high vacuum techniques.

* Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2003 Board of Trustees meeting.
Assistant Professors
Gall, D. — Ph.D. (University of Illinois, Urbana-Champaign); physical properties of thin films and nanostructures; combined theory, modeling and experimentation in thin film technology as applied to electronic structures and properties, transition-metal nitride film growth and characterization.
Keblinski, P. — Ph.D. (Pennsylvania State University); atomic mesoscopic-level computational modeling of interfacial processes; structure-property correlations; interfaces in silicon, diamond and metals; thin film growth; phase separation.
Ozisik, R. — Ph.D. (The University of Akron, Ohio); multiscale simulations of polymers, surface and interface properties of nanoparticles; development and characterization of fuel cells.
Ramanath, G. — Ph.D. (University of Illinois); thin film electronic materials; interconnects, diffusion barriers, low-k dielectrics; characterization of interfacial reactions, kinetics, and mechanisms of microstructure and phase evolution during deposition and annealing; processing self-organized structures for microelectronics applications.
Shima, M. — Ph.D. (University of Maryland); thin film deposition; nano-patterning, structural and magnetic characterization.

Research Professors
Doremus, R.H. — Ph.D. (University of Cambridge), Ph.D. (University of Illinois); glass science, sintering of ceramics, bone implant materials, reactions in fused salts, crystallization, diffusion, optical properties of metals (New York State Science and Technology Foundation Professor of Glass and Ceramics Science).
Hillig, W.B. — Ph.D. (University of Michigan); ceramic and polymer matrix composites, strength of glass, crystal growth.
Lupulescu, A. — Ph.D. (Rensselaer Polytechnic Institute); diffusion, crystal growth (Research Assistant Professor).

Emeritus Faculty
Chung, C.I. — Ph.D. (Rutgers University); polymer processing, polymer melt theology, relaxation behavior in polymer solids.
Ficalora, P.J. — Ph.D. (Pennsylvania State University); kinetics and thermodynamics of heterogeneous reactions, chemisorption effects on electronic materials.
Lenel, F.V. — Ph.D. (University of Heidelberg); powder metallurgy technology, mechanisms of sintering, precipitation and dispersion strengthening mechanisms.
MacCrone, R.J. — D.Phil. (University of Oxford); electric properties of polymers and oxides, polarons, electron paramagnetic resonance and magnetic behavior of glasses, phase transformations, nucleation, electrical properties of thin oxide and nitride films, one-dimensional conductivity.
Murarka, S.P. — Ph.D. (University of Minnesota); Ph.D. (University of Agra); metallization for deep submicron silicon integrated circuits, low temperature and localized processes, thin dielectric films, diffusion and defects (Elaine S. and Jack S. Parker Chair in Engineering).
Nippes, E.F. — P.E., Ph.D. (Rensselaer Polytechnic Institute); physical metallurgy, welding metallurgy.
Stoloff, N.S. — Ph.D. (Columbia University); mechanical behavior of crystals, order-disorder reactions, fracture, stress corrosion.

Manager of Electron Microscopy Facilities
Dove, R.

Manager of Instruction Laboratories
Van Steele, D.

Manager of Metallographic Facilities
Planty, R.
Undergraduate Programs

Objectives of the Undergraduate Curriculum

While certain objectives of an undergraduate education in engineering are common to all programs, there are subtle but important differences that require some subset of objectives specific to ensuring that all graduates have specialized technical knowledge in their chosen field. In this regard, the Department of Materials Science and Engineering’s baccalaureate program produces students who will:

- Exhibit general knowledge in all major classes of materials and specialized knowledge in several classes, such as metals, ceramics and glasses, polymers, composites and electronic materials
- Recognize the interdependence of the structure, properties, processing, and performance of materials and be able to integrate fundamental materials science with analysis of experimental data, laboratory synthesis and processing as well as quantitative modeling
- Integrate meaningful design experiences within Materials Engineering and in relationship to other engineering disciplines
- Exhibit a thorough grounding in fundamental mathematics and science and the ability to apply this knowledge in identifying, formulating, and solving real-life engineering problems
- Be able to put engineering problems, their solutions, and consequences into a societal context
- Effectively communicate and work in teams
- Maintain a desire for life-long learning

Baccalaureate Program

The sample curriculum shown below, which results in the B.S. degree in Materials Engineering, requires a minimum of 128 credit hours and completion of the required elective courses that follow.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1100 Intro. to Engineering Analysis4</td>
<td>ENGR-1300 Eng. Processes...............................1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH-1010 Calculus I4</td>
<td>ENGR-1600 Materials Science for Engineers4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM-1300 Chemistry Principles for Engineers4</td>
<td>MATH-1020 Calculus II ..4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective4</td>
<td>PHYS-1100 Physics I ...4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS-1200 Physics II4</td>
<td>MTLE-2100 Science Elective4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH-2400 Intro. to Differential Equations4</td>
<td>ENGR-2100 Intro. to Engineering Design4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR-2250 Therm./Fluid I4</td>
<td>ENGR-2050 Structure of Materials4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective4</td>
<td>Hum. or Soc. Sci. Elective4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR-1200 Engineering Graphics and CAD1</td>
<td>CSCI-1190 Beginning C Programming for Engineers1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electives
The following is a list of courses from which the electives indicated above should be selected.

Restricted Elective Options

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2530</td>
<td>Strength of Materials</td>
<td></td>
</tr>
<tr>
<td>ENGR-2350</td>
<td>Embedded Control</td>
<td></td>
</tr>
<tr>
<td>ENGR-2090</td>
<td>Engineering Dynamics</td>
<td></td>
</tr>
<tr>
<td>ECSE-2010</td>
<td>Electric Circuits</td>
<td></td>
</tr>
<tr>
<td>ENGR-4300</td>
<td>Electronics Instrumentation</td>
<td></td>
</tr>
</tbody>
</table>

Materials Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTLE-4030</td>
<td>Glass Science</td>
<td></td>
</tr>
<tr>
<td>MTLE-4050</td>
<td>Intro. to Polymers</td>
<td></td>
</tr>
<tr>
<td>MTLE-4160</td>
<td>Semiconducting Materials</td>
<td></td>
</tr>
<tr>
<td>MTLE-4290</td>
<td>Electronic Packaging</td>
<td></td>
</tr>
<tr>
<td>MTLE-4410</td>
<td>Welding Processes and Metallurgy</td>
<td></td>
</tr>
<tr>
<td>MTLE-4420</td>
<td>Joining of Advanced Materials</td>
<td></td>
</tr>
<tr>
<td>MTLE-4630</td>
<td>Composites Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Minors Programs
Students not majoring in materials science and engineering may receive a minor in this discipline by completing 15 credit hours of department courses with a MTLE designation.

Graduate Programs
The Department of Materials Science and Engineering offers programs leading to the M.S., M.Eng., and Ph.D. degrees.

Master’s Programs
Both the M.S. and the M.Eng. require completion of a minimum of 30 credit hours.

Master of Science
For the M.S., students must complete 24 credits of course work, with at least 18 credits in materials courses. Three credits each are required in the areas of thermodynamics and kinetics, structure, and mechanical properties. Students who have not taken courses equivalent to undergraduate work at Rensselaer in X-ray diffraction, thermodynamics, mechanical properties, and their area of specialization must take graduate courses in these areas. Six credits of research work leading to an M.S. thesis are also required.

Master of Engineering
At least 21 credits of course work toward the M.Eng. degree must be materials courses. These must include one course each in structure and defects, thermodynamics and kinetics, and mechanical properties. A capstone independent study project is also required.

*This course will be fulfilled from a list published at the start of each semester.
*This course can be taken in either semester of senior year.
Doctoral Programs
A minimum of 45 credits in course work is required for the Ph.D. degree in materials engineering. In addition to the course requirements for the M.S. degree, a minor of nine credits in a subject area outside the materials department is required. The student must pass an oral preliminary examination and an oral candidacy examination, as well as the final examination on the Ph.D. thesis.

Course Descriptions
Courses offered by the Department of Materials Science & Engineering are described in the Course Description section of this catalog under the department code MTLE.

Mechanical, Aerospace, and Nuclear Engineering

Chair: John A. Tichy

Director, Mechanical Engineering: John A. Tichy

Director, Aerospace Engineering: Zvi Rusak

Director, Nuclear Engineering and Engineering Physics: Don Steiner

Associate Chair for Graduate Studies: Antoinette Maniatty

Associate Chair for Undergraduate Studies: Henrik J. Hagerup

Department Home Page: www.rpi.edu/dept/mane

Mechanical engineers are engaged in a wide range of activities. At one end of the spectrum, they are concerned with fundamental engineering science, especially energetics and mechanics. At the other end, they are involved with the hardware of various technologies—the design and manufacture of mechanical components and systems. Aerospace engineering is a branch of mechanical engineering with associated technologies that apply not only to aircraft and spacecraft, but to other vehicular systems such as submarines and hydrofoils as well. Nuclear engineering and engineering physics focus on the methods, devices, and systems required for the peaceful use of nuclear technology. While nuclear engineering’s particular emphasis is on nuclear power generation, engineering physics emphasizes the radiation aspect of this technological area.

Research and Innovation Initiatives
Opportunities for research and innovation are delineated below. Opportunities may be theoretical, computational, and/or experimental. The Flexible Manufacturing Center, the Center for Multiphase Research, the New York State Center for Automation Technologies, the Scientific Computation Research Center, the Center for Integrated Electronics, and the Center for Composite Materials and Structures offer additional research opportunities for the department's undergraduate and graduate students and their faculty advisers.

Aeronautics
Research is conducted into the performance of fixed wing aircraft, rotorcraft, and space vehicles, as well as micro-vehicles. The research is supported by fundamental studies in aerodynamics, advanced propulsion concepts, vehicle dynamics, and design optimization.

Facilities include the 4-by-6-foot subsonic wind tunnel, the transonic and supersonic blow-down wind tunnel, the 70-foot-long shock tube, the hypersonic shock tunnel, and the structures and controls laboratory.
Applied Mechanics/Mechanics of Materials
Applied Mechanics refers to the theoretical foundations of mechanical engineering. Basic research is being performed on diverse topics such as acoustics, fatigue and fracture processes, nonlinear vibrations, and plasticity. Materials of the latest technologies such as composites, microelectronic materials, and carbon nanotubes are studied from the mechanical perspective. The finite element method is a computational approach in modeling material behavior.

Facilities include the mechanics of materials laboratory, the laboratory for noise control research, and the mechanical systems laboratory.

Energy Systems/Multiphase Phenomena and Heat Transfer
Studies are related to energy conversion and the development of mechanical power, convective heat transfer and freezing, electronic cooling, fouling, heat transfer augmentation, mass transfer, computational fluid dynamics and multidimensional effects in multiphase flow, and heat transfer with applications in nuclear, mechanical, thermal, chemical, biomedical and pharmaceutical systems, development of mechanistic models, and computer simulation capabilities.

Facilities include the gas turbine laboratory; the energy systems laboratory; subsonic, transonic, and supersonic wind tunnels; shock tubes and the hypersonic shock tunnel; the heat transfer laboratory; and the laboratory for fouling research. Additional equipment includes various two-phase flow loops and associated instrumentation, laser Doppler anemometer, optical void probes, and the resources of the Center for Multiphase Research.

Mechanical and Nuclear Engineering are both concerned with energy conversion and the development of mechanical power. Issues of heat transfer are important, from a range of large-scale industrial processes, down to the cooling of electronic micro components with extreme power density. Thermal and fluid flow properties are studied by theoretical and computational means (computational fluid dynamics). Multiphase processes are important in problems from drug delivery optimization to nuclear power cooling systems. Facilities include the thermal fluids laboratory; subsonic, transonic, and supersonic wind tunnels; and the heat transfer laboratory. Additional equipment includes various two-phase flow loops and associated instrumentation, laser Doppler anemometer, etc.

Environmental Health Physics and Radiation Dosimetry
Research in this area has diverse applications: the assessment of environmental radioactivity for the nuclear industry; investigations of health physics practices in hospitals; analysis of worker effective doses from external and internal exposures; and optimization of radiation therapy doses in biomedical applications. These problems are studied theoretically by Monte Carlo methods, among several techniques. Facilities include a versatile health physics laboratory and modern nuclear radiation detection and characterization systems.

Manufacturing/Design
Studies revolve around design methodology in general and mechanical engineering design techniques in particular. There are applications in machinery and mechanical systems design, the development of new manufacturing techniques, and operation of manufacturing facilities. Areas of concentration include CAD/CAM, diagnostics and controls, tribology, metrology rapid prototyping, robotics and flexible manufacturing, and system integration. Facilities include the advanced manufacturing laboratory, the design optimization laboratory, the robotics and mechanisms laboratory, and the mechatronics laboratory.

Nuclear Science and Technology
Research involves a wide spectrum of issues crucial to the nuclear industries. Investigations are ongoing
into the interaction of neutrons and other radiation with materials used in nuclear reactors; nuclear data analysis and evaluation; radiation transport studies; conceptual designs of fusion power systems and their engineering, safety, and environmental implications; plasma wall interactions; analysis of reactor accidents and safety studies. Facilities include a versatile 100-Mev electron linear accelerator, time-of-flight and associated instrumentation, a critical reactor facility, a three-dimensional laser Doppler anemometer, and miscellaneous nuclear radiation equipment and computational aids.

Space Technology

Research areas include analysis, design, development, and operations required for space exploration and utilization. Research is ongoing in advanced energetics (laser propulsion), structural dynamics and optimization, and crystal growth in space. Facilities include various supersonic wind tunnels, the shock tube, and crystal growth laboratories.

Faculty

Professors

Crespo da Silva, M.R.M.—Ph.D. (Stanford University); dynamics, nonlinear vibrations, perturbation methods, computerized symbolic manipulation.

Drew, D.A.—Ph.D. (Rensselaer Polytechnic Institute); applied mathematics, fluid mechanics (joint appointment, Mathematics home department).

Dvorak, G.J.—NAE, Ph.D. (Brown University); mechanics of solids, composite materials and structures, fracture and fatigue (William Howard Hart Professor of Mechanics).

Fish, J.—Ph.D. (Northwestern University); computational mechanics, finite element methods, micromechanics, mathematical modeling (joint appointment, Civil Engineering home department).

Gabriele, G.A.—Ph.D. (Purdue University); design automation, design optimization (Vice Provost for Administration, Dean of Undergraduate Education).

Hajela, P.—Ph.D. (Stanford University); optimum design, structural dynamics, aeroelasticity.

Jensen, M.K.—Ph.D., P.E. (Iowa State University); heat transfer, fluid mechanics, energy systems.

Lahey, R.T., Jr.—NAE, Ph.D., (Stanford University); multiphase flow and boiling heat transfer, reactor safety analysis, reactor thermal-hydraulics, applications of chaos theory (jointly with the Chemical Engineering Department; Edward W. Hood Jr. Professor).

Li, C.J.—Ph.D. (University of Wisconsin-Madison); control of manufacturing process and equipment, machine condition monitoring, nonlinear system identification.

Malaviya, B.K.—Ph.D. (Harvard University); fission and fusion reactor physics and technology, biomedical applications, radioactive waste management, pedagogic technology (jointly with Engineering Science).

Ostrogorsky, A.G.—Sc.D. (Massachusetts Institute of Technology); heat transfer and fluid mechanics, solidification, crystal growth (jointly with Materials Science and Engineering Department).

Podowski, M.Z.—Ph.D. (Warsaw University of Technology); two-phase flow and heat transfer, reactor dynamics and safety, system stability, applied mathematics.

Rusak, Z.—D.Sc. (Technion-Israel Institute of Technology); theoretical aerodynamics, fluid mechanics.

Smith, R.N.—Ph.D. (University of California, Berkeley); energy systems.

Shephard, M.S.—Ph.D. (Cornell University); finite element analysis, computer graphics, computer-aided design (jointly with the Civil Engineering Department; Samuel A. Johnson ’37 and Elizabeth C. Johnson Professor of Engineering).

Spilker, R.L.—Ph.D. (Massachusetts Institute of Technology); biomechanics, finite element methods (joint appointment, Biomedical Engineering home department).

Departmental faculty listings are accurate as of the date generated for inclusion in this catalog. For the most up-to-date listing of faculty positions, including end-of-year promotions, please refer to the Faculty Roster section of this catalog, which is current as of the May 2003 Board of Trustees meeting.
Steiner, D.—PhD. (Massachusetts Institute of Technology); nuclear fusion systems, plasma engineering, radiation effects on materials (Institute Professor of Nuclear Engineering).

Tichy, J.A.—Ph.D. (University of Michigan); tribology, non-Newtonian fluid mechanics, rheology.

Tiersten, H.F.—Ph.D., PE. (Columbia University); continuum mechanics, continuum physics, electro-mechanical devices, structures.

Associate Professors

Anderson, K.S.—Ph.D. (Stanford University); multibody dynamics, parallel computing, vehicle dynamics.

Blanchet, T.A.—Ph.D. (Dartmouth College); tribology, solid lubrication, surface science, contact mechanics.

Craig, K.C.—Ph.D. (Columbia University); design, tribology, mechanics, controls (Chair, Engineering Science, and Director, Core Engineering).

Derby, S.J.—Ph.D. (Rensselaer Polytechnic Institute); automation, mechanisms, robotics, design.

Embrechts, M.J.—Ph.D. (Virginia Polytechnic Institute); fusion engineering, applied chaos theory, neural networks (joint appointment, Decision Sciences and Engineering Systems home department).

Hagerup, H.J.—Ph.D. (Princeton University); viscous flow.

Hirsa, A.—Ph.D. (University of Michigan); fluid mechanics, experimental gas dynamics.

Huang, H.—Ph.D. (University of California, Los Angeles); nanomechanics of materials, thin film deposition, radiation damage, multiscale materials modeling.

Jansen, K.—Ph.D. (Stanford University); computational mechanics, parallel computing, computational fluid dynamics.

Kaminski, D.A.—Ph.D. (Rensselaer Polytechnic Institute); heat transfer, computational fluid mechanics, thermal radiation.

Maniatty, A.M.—Ph.D. (Cornell University); continuum mechanics, mechanics of materials (Clare Boothe Luce Associate Professor).

Messac, A.—Ph.D. (Massachusetts Institute of Technology); optimal design, physical programming, design methodology, structural dynamics.

Myrabo, L.N.—Ph.D. (University of California, San Diego); energy systems, space technology.

Scarton, H.A.—Ph.D. (Carnegie Mellon University); biomechanics, wave phenomena, acoustics, noise control.

Walczyk, D.F.—Ph.D., PE. (Massachusetts Institute of Technology); rapid tooling, environmentally conscious design, machine design.

Xu, G.X.—Ph.D. (Texas A&M University); environmental health physics, health and medical physics, Monte Carlo simulations, anatomical modeling, biomedical use of radiation (jointly with the Biomedical Engineering Department).

Associate Clinical Professor

Steiner, M.W.—Ph.D. (Rensselaer Polytechnic Institute); multidisciplinary design, product architecture, advanced design methods.

Assistant Professors

Borca-Tasciuc, T.—Ph.D. (University of California, Los Angeles); heat transfer and energy conversion, nanotechnology, MEMS.

Castillo, L.—Ph.D. (University at Buffalo); fluid mechanics, turbulent boundary layers.

Danon, Y.—Ph.D. (Rensselaer Polytechnic Institute); nuclear instrumentation and data, accelerator technology and radiation applications, nondestructive testing, neural networks applications.

De, S.—Sc.D. (Massachusetts Institute of Technology); numerical methods in engineering, multimodal virtual environments, fast computational techniques of MEMS.
Koratkar, N.A.—Ph.D. (University of Maryland at College Park); smart materials and structures, rotorcraft, unsteady aerodynamics.

Peles, Y.—Ph.D. (Technion-Israel Institute of Technology); MEMS fabrication, design and device testing, design and manufacturing of electronic packaging.

Picu, C.R.—Ph.D. (Dartmouth College); mechanics of solids, micro- and nano-mechanics of crystalline defects, atomistic simulations.

Research Assistant Professors
Antal, S.—Ph.D. (Rensselaer Polytechnic Institute); computational fluid dynamics, numerical methods in multiphase flows, heat transfer.

Kim, C.H.—Ph.D. (Texas A&M University); Monte Carlo radiation transport, dosimeter simulation, organ dose calculation, medical physics dosimetry, shield design, radiation field characterization.

Wang, X.—Ph.D. (Texas A&M University); microscale heat transfer and fluid flow in porous media, microheat pipes and its applications, microelectronic cooling and electronic packaging.

Senior Lecturer
Swersey, B.L.—B.S. (Cornell University); creativity in design, design methodology.

Lecturer
McDougall, R.—B.S. (Rensselaer Polytechnic Institute); mechatronics.

Adjunct Faculty
Anderson, T.—Ph.D. (New York University); plasma physics, fluid dynamics, reactor physics and radioactive waste management, environmental engineering.

Borton, D.N.—Ph.D. (Rensselaer Polytechnic Institute); solar energy.

Caracappa, P.—M.S. (Rensselaer Polytechnic Institute); radiation safety, health physics.

DeLorey, T.F.—Ph.D. (Massachusetts Institute of Technology); reactor physics, computational physics, software engineering.

Feitelberg, A.S.—Ph.D. (Massachusetts Institute of Technology); combustion.

Francis, N.—Ph.D. (University of Rochester); reactor physics.

Haley, T.—Ph.D. (Rensselaer Polytechnic Institute); nuclear fuel management, mathematical modeling, reactor design.

Ting, J.K.—M.S. (Massachusetts Institute of Technology); energy systems.

Trumbull, T.H.—M.Eng. (Rensselaer Polytechnic Institute); research reactor experimental operations.

Witter, J.K.—Ph.D. (Massachusetts Institute of Technology); reactor physics, plant operations, thermal hydraulics, reactor for space applications.

Emeritus Faculty
Bergles, A.E.—P.E., NAE, Ph.D. (Massachusetts Institute of Technology); heat transfer, two-phase flow.

Block, R.C.—Ph.D. (Duke University); nuclear structure and data, radiation effects in electronics, accelerator technology neutron reactions, real-time radiography, industrial applications of radiation, nondestructive testing.

Ettles, C.M.—Ph.D. (Imperial College), D.Sc. (University of London); mechanical design, machine dynamics, tribology.

Harris, D.R.—Ph.D. (Rensselaer Polytechnic Institute); reactor physics, fusion technology, shielding, reactor noise analysis.

Krempl, E.—Dr.Ing. (Technical University of Munich); continuum mechanics; mechanics of materials; creep, fatigue, inelastic analysis (Rosalind and John J. Redfern Jr. Professor of Engineering).

Lee, D.—Sc.D. (Massachusetts Institute of Technology); mechanics of materials, computer-aided manufacturing.
Undergraduate Programs

Objectives of the Undergraduate Curriculum

While certain objectives of an undergraduate education in engineering are common to all programs, there are subtle but important differences that require some subset of objectives specific to ensuring that all graduates have specialized technical knowledge in their chosen field. In this regard, graduates of the Department of Mechanical, Aerospace, and Nuclear Engineering's baccalaureate program will:

- Be able to apply skills in science and mathematics to the practice of engineering.
- Through a broad education in the humanities and social sciences, be able to identify and treat problems of interest to society.

- Have the ability to analyze real-world problems and to design products and systems for their solution.
- Develop strong communication skills both oral and written.
- Exhibit teamwork skills and leadership ability, working both within specialized and multidisciplinary settings, and form an awareness and appreciation of ethical and societal implications and the impact of engineering solutions in a global context.

- Have a broad foundation in mechanical systems, thermal and fluids engineering, and electronics and controls; be able to apply their knowledge to the design of mechanical and thermal/fluids systems and devices; gain additional technical depth in one or more areas of concentration, such as aeronautics, applied energy systems, design optimization, dynamics, heat transfer and fluid mechanics, manufacturing, mechatronics, and mechanics of materials; and be familiar with basic laboratory techniques in mechanical and in thermal/fluids engineering or

- Have a broad foundation in aerodynamics, aircraft structures, propulsion, and flight mechanics; be able to design and conduct experiments; and be familiar with basic numerical methods for engineering problems and the use of high-level computer software or

- Develop and demonstrate the ability to apply relevant atomic and nuclear phenomena to nuclear and radiological systems and processes, conduct experimental investigations, and work on design projects.
so as to be prepared to work professionally in one or more of the nuclear or radiological fields of specialization identified by the nuclear engineering program or

- Have a broad foundation in the application of engineering to physical systems and additional depth in one or more areas of concentration such as multiphase science, radiation technology, microelectronics, and applied mathematics; conduct experimental and analytical investigations and design projects; and develop the ability to work professionally in one or more of the areas of specialization identified by the engineering physics program.

- Be motivated for continued intellectual growth and improvement in engineering skill beyond graduation.

Students may achieve these objectives through completion of the B.S. degree in mechanical engineering, aerospace engineering, nuclear engineering, or engineering physics. A variety of options are available to those pursuing the B.S., depending upon the specific degree program. These options, which include concentrations, minors, and/or dual majors are delineated within the following individual descriptions of each baccalaureate curriculum.

Baccalaureate Programs

Freshmen or sophomores who have identified mechanical, aerospace, nuclear engineering, or engineering physics as their major may follow the baccalaureate program below in lieu of the general core engineering program presented earlier. The total number of credit hours required to complete any of these curricula is 128. Dual major programs which lead to a single baccalaureate degree embracing two fields are also available and are described in more detail below.

Mechanical Engineering Curriculum

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1100 Intro. to Engineering Analysis4</td>
<td></td>
</tr>
<tr>
<td>ENGR-1200 Eng. Graphics and CAD ¹1</td>
<td></td>
</tr>
<tr>
<td>CHEM-1300 Chemistry Principles for Engineers...4</td>
<td></td>
</tr>
<tr>
<td>MATH-1010 Calculus I.................................4</td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1300 Engineering Processes ¹ ²1</td>
<td></td>
</tr>
<tr>
<td>ENGR-1600 Materials Science for Engineers4</td>
<td></td>
</tr>
<tr>
<td>MATH-1020 Calculus II4</td>
<td></td>
</tr>
<tr>
<td>PHYS-1100 Physics I4</td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective4</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2530 Strength of Materials4</td>
<td></td>
</tr>
<tr>
<td>MATH-2400 Intro. to Differential Equations4</td>
<td></td>
</tr>
<tr>
<td>PHYS-1200 Physics II4</td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2050 Intro. to Engineering Design4</td>
<td></td>
</tr>
<tr>
<td>ENGR-2090 Engineering Dynamics4</td>
<td></td>
</tr>
<tr>
<td>ENGR-2250 Thermal and Fluids Engineering I4</td>
<td></td>
</tr>
<tr>
<td>Hum. or Soc. Sci. Elective4</td>
<td></td>
</tr>
<tr>
<td>CSCI-1190 Beginning C Programming for Engineers4</td>
<td></td>
</tr>
</tbody>
</table>

¹ These required courses may be taken in any order.

² Alternative: ENGR-1310
Third Year

<table>
<thead>
<tr>
<th>Fall Credit hours</th>
<th>Spring Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2600 Modeling and Analysis of Uncertainty 3</td>
<td>ENGR-2350 Embedded Control 4</td>
</tr>
<tr>
<td>ENGR-4300 Electronic Instrumentation Mechanical Engineering Core Module 3 6</td>
<td>ENGR-4050 Modeling and Control of Dynamic Systems 4</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Core Module 3 6</td>
</tr>
<tr>
<td></td>
<td>Professional Development II 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANE-4260 Design of Mechanical Engineering Systems 3</td>
</tr>
<tr>
<td>ENGR-4010 Professional Development III 4</td>
</tr>
<tr>
<td>Concentration Elective (Restricted) 3</td>
</tr>
<tr>
<td>Concentration Elective 3</td>
</tr>
<tr>
<td>Concentration Elective 3</td>
</tr>
<tr>
<td>Concentration Elective 3</td>
</tr>
<tr>
<td>Free Elective 4</td>
</tr>
<tr>
<td>Free Elective 4</td>
</tr>
<tr>
<td>Free Elective 4</td>
</tr>
</tbody>
</table>

Concentrations
The mechanical engineering curriculum offers the following six concentration options.

Aeronautics
The focus is on the analysis, design, development, and operation of flight vehicles, which is fundamental for students interested in aeronautical engineering. This concentration provides a strong engineering and scientific foundation in fluid mechanics, thermodynamics, structural dynamics, vehicular mechanics, and control systems analysis. Student projects in recent years have involved spin preventions in fighter aircraft, trailing vortex dissipation, and helicopter maneuverability.

Applied Mechanics
This concentration provides the opportunity for fundamental study in fluid mechanics and solid mechanics. The objective is to develop broad analytical abilities and encourage critical inquiry. Programs in this area usually continue through the master’s level. Topics have included cellular heat convection, locally separated flow, and inelastic fatigue analysis and fracture. Biomechanics, especially the mechanics of musculoskeletal systems, is part of this concentration.

Design
The concern here is with design methodology in general and mechanical design techniques in particular.

1 Choice of Mechanical Design Module and Thermal and Fluids Module. Both modules are required for graduation; each module may be taken in either semester. The Mechanical Design Module consists of MANE-4030 and MANE-4040, taken concurrently. The Thermal and Fluids Module consists of MANE-4010 and MANE-4020, taken concurrently. Other third year courses may be taken in either semester.

4 This course will be fulfilled from a list published at the start of each semester. It must be completed before MANE-4260.

5 Can be taken either semester senior year.
and is intended for mechanical engineering students interested in the design of machinery and mechanical systems. A student interested in the design of specialized mechanical equipment can develop a suitable program from courses in this and other mechanical engineering concentrations.

Energy Systems
This concentration is intended for those interested in energy conversion and the development of mechanical power. Students concerned with the design of equipment in this field should consider this concentration together with the design concentration. Those interested in the fundamentals should consider this concentration together with the applied mechanics concentration.

Manufacturing Concentration
This area is intended for the mechanical engineering student who is interested in manufacturing and is planning a career designing manufacturing equipment, developing new manufacturing techniques, or operating manufacturing facilities.

Space Technology
This is an inherently multidisciplinary area that is offered for students interested in the analysis, design, development, and operations required for space exploration and utilization. Current areas of particular emphasis include the space environment, propulsion, orbital and structural dynamics, structures and control.

Concentration Electives Criteria
Students wishing to obtain any one of these concentrations must adhere to strict concentration electives criteria as follows. The first two courses within the four-course concentration are highly restricted. The first of these should be selected from the courses listed below. These courses define the concentration areas available within mechanical engineering and are thus termed “concentration-defining” electives.

<table>
<thead>
<tr>
<th>Applied Mechanics</th>
<th>Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANE-4670 Mechanical Behavior of Materials I</td>
<td>MANE-4710 Advanced Heat Transfer</td>
</tr>
<tr>
<td>MANE-4170 Machine Dynamics</td>
<td>MANE-4720 Design and Analysis of Energy Systems</td>
</tr>
<tr>
<td>Aeronautics</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>MANE-4070 Aerodynamics I</td>
<td>MANE-4800 Boundary Layers and Heat Transfer</td>
</tr>
<tr>
<td>MANE-4060 Aerospace Structural Analysis</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>MANE-4280 Design Optimization</td>
<td>MANE-4550 Analysis of Manufacturing Processes</td>
</tr>
<tr>
<td>MANE-4180 Mechanisms</td>
<td>ENGR-4710 Advanced Manufacturing Laboratory I</td>
</tr>
<tr>
<td></td>
<td>Mechatronics</td>
</tr>
<tr>
<td></td>
<td>MANE-4900 Mechatronics</td>
</tr>
</tbody>
</table>

The second of the restricted concentration elective courses may be chosen from either:

- A list of courses associated with the originally defined concentration area. Such courses will be termed “concentration-completing” electives. Through them, a student clearly identifies a concentration within the mechanical engineering major.
- The original short list of concentration-defining electives. Through these, a student obtains greater breadth within mechanical engineering.

Any student wishing to satisfy these restricted concentration elective requirements in another way may first consult with the adviser and then propose a plan to the associate chair in undergraduate studies for approval. Students are reminded to consult the catalog and the Class Hour Schedule for the availability of a particular course in any given semester.
The second two courses of the four-course concentration are to be selected from any upper-level (4000 or above) course in science, engineering, or mathematics. One of these may be an independent study course, such as a design project or an undergraduate research project. The second course should not normally be a project. However, the associate chair for undergraduate studies may grant approval for an exception based on a particularly valuable research experience.

Humanities or Social Sciences Electives

In this area, the electives are based on the Institute and School of Engineering requirements. Students are urged to elect humanities and social science sequences through which they will obtain adequate breadth and depth in subject areas. Students desiring minors in Humanities and Social Sciences must consult the school or department in which the courses are offered to obtain further information and specific requirements.

Dual Major Programs

Dual majors lead to a single baccalaureate degree embracing two fields. Special programs which can be completed in eight semesters have been developed. Examples include dual majors in Mechanical Engineering and Aerospace Engineering, Mechanical Engineering and Biomedical Engineering, Mechanical Engineering and Nuclear Engineering, Mechanical Engineering and Product Design and Innovation (STS), and others. Further information is available in the departmental office.

Aerospace Engineering Curriculum

<table>
<thead>
<tr>
<th>First Year</th>
<th>Second Year</th>
<th>Third Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
<td>Spring</td>
</tr>
<tr>
<td>ENGR-1100</td>
<td>ENGR-1300</td>
<td>ENGR-4050</td>
</tr>
<tr>
<td>ENGR-1200</td>
<td>ENGR-2050</td>
<td>MANE-4030</td>
</tr>
<tr>
<td>CHEM-1300</td>
<td>ENGR-2090</td>
<td>MANE-4900</td>
</tr>
<tr>
<td></td>
<td>ENGR-2250</td>
<td></td>
</tr>
<tr>
<td>MATH-1010</td>
<td>PHYS-1100</td>
<td>MANE-4920</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Spring</td>
<td>Spring</td>
</tr>
<tr>
<td>ENGR-2530</td>
<td>ENGR-4050</td>
<td>Modeling and Analysis of Uncertainty3</td>
</tr>
<tr>
<td>ENGR-2400</td>
<td>MANE-4030</td>
<td>Elements of Mechanical Design4</td>
</tr>
<tr>
<td>PHYS-1200</td>
<td>MANE-4900</td>
<td>Vibration ...3</td>
</tr>
<tr>
<td></td>
<td>MANE-4920</td>
<td>Laboratory ..2</td>
</tr>
<tr>
<td></td>
<td>MANE-4920</td>
<td></td>
</tr>
</tbody>
</table>

1 These required courses may be taken in any order.
2 Alternative: ENGR-1310.
3 This course will be fulfilled from a list published at the start of each semester.
Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-4010</td>
<td>4</td>
<td>Professional Development III</td>
<td>1</td>
</tr>
<tr>
<td>MANE-4080</td>
<td></td>
<td>Propulsion Systems</td>
<td>4</td>
</tr>
<tr>
<td>MANE-4800</td>
<td></td>
<td>Boundary Layers and Heat</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transfer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight Mechanics Elective 5</td>
<td>4</td>
</tr>
<tr>
<td>MANE-4910</td>
<td></td>
<td>Fluid Dynamics Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

Humanities or Social Sciences Electives

In this area, the electives are based on the Institute and School of Engineering requirements for these electives. Students are urged to elect humanities and social science sequences through which they will obtain adequate breadth and depth in subject areas. Students desiring minors in Humanities and Social Sciences must consult the school or department in which the courses are offered to obtain further information and specific requirements.

Dual Major Programs

A dual major in Aerospace Engineering and Mechanical Engineering is available to students who follow a prescribed program that can be completed in eight semesters. These students would choose ENGR-1600, ENGR-2350 and ENGR-4300 as free electives. General requirements and procedures for dual degrees are described within the Academic Information and Regulations section of this catalog.

* Can be taken either semester senior year.

5 Choice of: MANE-4090, MANE-4100, or MANE-4200.

6 Choice of: MANE-4230, MANE-4850, or MANE-4860.
Nuclear Engineering Curriculum

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1100</td>
<td>Intro. to Engineering Analysis 4</td>
</tr>
<tr>
<td>MATH-1010</td>
<td>Calculus I .. 4</td>
</tr>
<tr>
<td>CHEM-1300</td>
<td>Chemistry Principles for Engineers 4</td>
</tr>
<tr>
<td>ENGR-1200</td>
<td>Eng. Graphics and CAD 1 1</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS-1100</td>
<td>Physics I .. 4</td>
</tr>
<tr>
<td>MATH-1020</td>
<td>Calculus II .. 4</td>
</tr>
<tr>
<td>ENGR-1600</td>
<td>Materials Science for Engineers 4</td>
</tr>
<tr>
<td>ENGR-1300</td>
<td>Intro. to Eng. Electronics 1 1</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS-1200</td>
<td>Physics II .. 4</td>
</tr>
<tr>
<td>MATH-2400</td>
<td>Intro. to Differential Equations 4</td>
</tr>
<tr>
<td>Free Elective I 4</td>
<td></td>
</tr>
<tr>
<td>Hum or Soc. Sci. Elective 4</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2600</td>
<td>Modeling and Analysis of Uncertainty 3</td>
</tr>
<tr>
<td>ENGR-2830</td>
<td>Nucl. Phenomena for Eng. Appl. 4</td>
</tr>
<tr>
<td>ENGR-2050</td>
<td>Intro. to Eng. Design 4</td>
</tr>
<tr>
<td>CSCI-1190</td>
<td>Beginning C Programming for Engineers 1</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2250</td>
<td>Thermal and Fluids Eng. I 4</td>
</tr>
<tr>
<td>ENGR-4300</td>
<td>Electronic Instrumentation 4</td>
</tr>
<tr>
<td>MANE-2400</td>
<td>Fundamentals of Nuclear Eng. 4</td>
</tr>
<tr>
<td>Hum or Soc. Sci. Elective 4</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANE-4400</td>
<td>Nucl. Power Systems Engineering 4</td>
</tr>
<tr>
<td>MANE-4480</td>
<td>Physics of Nuclear Reactors 4</td>
</tr>
<tr>
<td>MANE-4470</td>
<td>Radiological Engineering 4</td>
</tr>
<tr>
<td>Professional Development II 2 2</td>
<td></td>
</tr>
<tr>
<td>Technical Elective 3 3</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-4050</td>
<td>Mod. and Control of Dynamic Sys. 4</td>
</tr>
<tr>
<td>MANE-4370</td>
<td>Nuclear Engineering and Eng. Physics Lab. 4</td>
</tr>
<tr>
<td>Free Elective II 4</td>
<td></td>
</tr>
<tr>
<td>MANE-4380</td>
<td>Senior Design Project I 1</td>
</tr>
<tr>
<td>ENGR-4010</td>
<td>Professional Development III 4 1</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted (NE) Elective I 3</td>
<td></td>
</tr>
<tr>
<td>Technical Elective II 3</td>
<td></td>
</tr>
<tr>
<td>Restricted (NE) Elective II 3</td>
<td></td>
</tr>
<tr>
<td>Senior Design Project II 2</td>
<td></td>
</tr>
<tr>
<td>Free Elective III 4</td>
<td></td>
</tr>
</tbody>
</table>

Concentrations

For more information on any of these concentrations, students should consult with their program adviser.

Reactor Physics

This area of concentration is intended for students who wish to develop expertise in the physics of nuclear power reactor cores. Topics such as reactor physics design, nuclear fuel management, and reactor startup physics tests are included.

1 May be taken in any order in the first two semesters.
2 Includes Professional Development I.
3 Any course in engineering or science at 4000 level or higher.
4 Can be taken either semester senior year.
Reactor Engineering
This area of concentration is intended for students who wish to develop a broad understanding of nuclear technology. Topics such as reactor thermal-hydraulics, reliability, safety and licensing, radioactive waste management, structural dynamics, and materials problems are included.

Health Physics
This area of concentration is intended for students who wish to develop expertise in the radiation safety aspects of nuclear power plant operations and the associated nuclear fuel cycle.

Nuclear Thermal Hydraulics
This area of concentration is intended for students who wish to develop an extended knowledge and the ability to apply principles of fluid mechanics and heat transfer in single-phase and multiphase gas-liquid systems to reactor engineering.

Nuclear Plant Operations and Management
This area of concentration is intended for students who wish to specialize in the operation and management of nuclear power plants. This concentration is directed toward students interested in careers with nuclear electric utility organizations.

Fusion Reactor Engineering
This area of concentration is intended for students who desire to develop expertise in the analysis, assessment, and design of fusion reactor power systems.

Humanities or Social Sciences Electives
In this area, the electives are based on the Institute and School of Engineering requirements. Students are urged to elect humanities and social science sequences through which they will obtain adequate breadth and depth in subject areas. Students desiring minors in Humanities and Social Sciences must consult the school or department in which the courses are offered to obtain further information and specific requirements.

Dual Major Programs
Dual major programs in Nuclear Engineering and Mechanical Engineering, and in Nuclear Engineering and Engineering Physics, are available to students who follow prescribed programs that can be completed in eight semesters. Further information is available in the departmental office.

Minor Programs
Students not majoring in nuclear engineering may receive a minor in this discipline by completing 15–16 credit hours of study selected in consultation with their program adviser.
Engineering Physics Curriculum

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-1100</td>
<td>Intro. To Engineering Analysis4</td>
<td>PHYS-1100</td>
<td>Physics I4</td>
</tr>
<tr>
<td>MATH-1010</td>
<td>Calculus I ...4</td>
<td>MATH-1020</td>
<td>Calculus II4</td>
</tr>
<tr>
<td>CHEM-1300</td>
<td>Chemistry Principles for Engineers4</td>
<td>Science Elective 14</td>
<td></td>
</tr>
<tr>
<td>ENGR-1200</td>
<td>Eng. Graphics and CAD 1 11</td>
<td>ENGR-1300</td>
<td>Engineering Processes or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGR-1310</td>
<td>Intro. to Eng. Electronics 1 11</td>
</tr>
</tbody>
</table>

1 May be taken in any order in the first two semesters.

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS-1200</td>
<td>Physics II ...4</td>
<td>ENGR-2600</td>
<td>Modeling and Analysis of</td>
</tr>
<tr>
<td></td>
<td>Free Elective I ..4</td>
<td>ENGR-2050</td>
<td>Intro. to Eng. Design4</td>
</tr>
<tr>
<td></td>
<td>Hum. or Soc. Sci. Elective4</td>
<td>CSCI-1190</td>
<td>Beginning C Programming for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Engineers4</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-4300</td>
<td>Electronic Instrumentation4</td>
<td>MANE-4470</td>
<td>Radiological Engineering4</td>
</tr>
<tr>
<td></td>
<td>Restricted (EP) Elective I4</td>
<td>MANE-4400</td>
<td>Professional Development II 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical Elective I 43</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit hours</th>
<th>Spring</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-4050</td>
<td>Mod. and Control of Dynamic Sys.........4</td>
<td>MANE-4390</td>
<td>Restricted (EP) Elective II3</td>
</tr>
<tr>
<td>MANE-4380</td>
<td>Free Elective II4</td>
<td>Technical Elective II 43</td>
<td></td>
</tr>
<tr>
<td>ENGR-4010</td>
<td>Professional Development III4</td>
<td>Senior Design Project II2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free Elective III 44</td>
</tr>
</tbody>
</table>

1 Includes Professional Development I.

2 Science Elective: ENGR-1600 or CSCI-1100 (C Programming not necessary after Computer Science I).

3 Any course in engineering or science at 4000 level or higher.
Concentrations

Radiation Applications
This area of concentration is intended for students who wish to develop expertise in various industrial and other applications of radiation, including radiation damage or enhancement of materials, nondestructive testing, etc.

Radiation Effects on Electronics
This area of concentration is intended for students interested in using radiation techniques to create advanced solid-state electronic circuitry and/or those interested in understanding how optical/electronic devices respond to radiation.

Multiphase Science and Technology
This area of concentration is concerned with applications of fluid mechanics and heat transfer technology to the interactions between mixtures of gases, liquids, and solids.

Fusion Applications
This area of concentration deals with the development and engineering applications of plasmas and the analysis of advanced magnetic confinement and laser-driven fusion power systems.

Humanities or Social Sciences Electives
In this area, the electives are based on the Institute and School of Engineering requirements. Students are urged to elect humanities and social science sequences through which they will obtain adequate breadth and depth in subject areas. Students desiring minors in Humanities and Social Sciences must consult the school or department in which the courses are offered to obtain further information and specific requirements.

Dual Major Programs
A dual major program in Engineering Physics and Nuclear Engineering is available to students who follow a prescribed program that can be completed in eight semesters. Further information is available in the departmental office.

Minor Programs
Students not majoring in engineering physics may receive a minor in this discipline by completing 15–16 credit hours of courses selected in consultation with the program adviser.

Special Undergraduate Opportunities

Program for Graduates of U.S. Navy Nuclear Power Training School
Rensselaer’s School of Engineering and its Department of Mechanical, Aerospace, and Nuclear Engineering, in cooperation with the Office of Professional and Distance Education and the U.S. Navy, have developed undergraduate degree programs in nuclear engineering and engineering physics for graduates of the U.S. Navy Nuclear Power Training School. Currently, Rensselaer offers programs to personnel stationed at the Kesselring Site in West Milton, New York. These academic programs and resulting degrees are the same as those offered to on-campus students studying this discipline.

Designed to meet the needs of Navy personnel, this program delivers courses and degree programs at a time and place that is convenient to them. Student services are flexible and designed to accommodate the needs of working professionals. Services such as undergraduate admissions and registration are handled entirely by mail, phone, fax, or e-mail. Programs and classes are delivered to Rensselaer’s Malta
Commons campus, just 20 minutes from the Kesselring Site. The course schedule developed for the program is coordinated with the shift work schedule of the Navy personnel.

The total number of credit hours required for the B.S. degree in either engineering science or nuclear engineering is 128. The curriculum is comprised of 104 engineering and science credits and four professional development credits. Navy students receive up to 31 credit hours of transfer credits for their Navy Nuclear Power Training School course work, leaving 97 credit hours to be completed at Rensselaer. Courses from other accredited universities may also be considered for transfer. The following is a list of credit transfer courses for graduates of the U.S. Navy Nuclear Power Training School.

Toward a degree in engineering physics:

- **ENGR-1300** Engineering Processes ... 1 transfer credit
- **CHEM-1300** Chemistry Principles for Engineers .. 4 transfer credits
- **USNA-1010** Military and Its Place in Society ... 1 transfer credit
- **USNA-2040** Naval Ship Systems ... 3 transfer credits
- **ENGR-2050** Intro. to Eng. Design with Prof. Development I 4 transfer credits
- **ENGR-2940** Engineering Project .. 3 transfer credits
- **ENGR-2960** Topics in Engineering .. 3 transfer credits
- **ENGR-4300** Electronic Instrumentation ... 4 transfer credits
- **MANE-4440** Critical Reactor Laboratory ... 3 transfer credits
- **ENGR-4010** Professional Development III .. 1 transfer credit

Toward a degree in nuclear engineering, in addition to the courses listed above:

- **MANE-2400** Fundamentals of Nuclear Engineering ... 4 transfer credits

The program has been divided into three trimesters (fall, spring, and summer) each calendar year. Students normally take three courses or 12 credit hours per trimester. Each trimester consists of approximately 15 weeks and averages a two-week break between any two consecutive trimesters. The total of 97 credits can usually be completed in two years plus seven to eight months.

Students with prior credits from other academic institutions may be eligible to transfer them to the present program. Rensselaer’s designated academic units are responsible for reviewing and approving such transfers. In addition, students may take a validation exam in selected subjects in place of some regular courses. Academic advisers provide advice and assistance in this regard.

Students must be in residence (i.e., enrolled as full-time students with a minimum of 12 credits per semester) for at least four semesters of their curriculum.

The academic director of this program is Michael Z. Podowski, and the program is administered through the Office of Professional and Distance Education.

Graduate Programs

The department offers graduate programs in mechanical engineering, aeronautical engineering, mechanics, nuclear engineering, and engineering physics. To accommodate a student’s career plans and interests, the graduate programs are structured to allow great flexibility in choosing appropriate courses, while ensuring sufficient depth and breadth. The professor assigned to or chosen by a student as the adviser has the knowledge to make suggestions of specific courses to further the student’s educational goals.

Among the available degrees are the M.Eng., which is perceived to be more practically oriented and consists of course work; the M.S., which is considered more scholarly or fundamental and must include a thesis; and Ph.D. Listed below are many of the requirements for these degrees. For all degrees, full-time stu-
Students must register each semester for the zero credit course MANE-6900, Graduate Seminar. Complete requirement information is available through the Office of Graduate Education.

Master’s Programs

Master of Science

Students work on a research project in conjunction with a professor who serves as the academic adviser. The topic is chosen based on mutual interests and needs. Course work typically focuses on subjects related to the research project. In addition to the Institute requirements and those listed above, the M.S. requires a total of 30 credits, six of which come from the thesis. Of the 24 credits of course work, a minimum of 12 must be at the 6000 level with a minimum of nine of these 6000-level courses from MANE (or courses that are cross-listed with MANE courses), and a minimum of 15 credits overall must be from MANE (or courses that are cross-listed with MANE courses). No more than six credits can be from outside of Engineering or Science.

Master of Engineering

M.Eng. students will primarily take courses to deepen and broaden their knowledge, usually in a focused area of study. If a project is included in the degree program, the student will have to involve a professor as an adviser. In addition to the Institute requirements and those listed above, the M.Eng. requires a total of 30 credits. If a project is taken, a minimum of 12 credits of coursework must be taken at the 6000 level with a minimum of nine of these taken within MANE (or courses cross-listed with Mane courses). If no project is undertaken, a minimum of 18 credits must be at the 6000 level, with a minimum of 12 of these taken within MANE (or courses that are cross-listed with MANE courses).

Students must also take part in a culminating experience consisting of:

- an approved sequence of three integrated or related courses with at least two courses in MANE, only one of which may be at the 4000 level. One of these courses must involve a project or design experience which integrates or synthesizes knowledge from other courses taken in the master’s program, or
- a six-credit project, or
- an internship/practicum involving a minimum of one summer and one semester full-time work in an approved setting.

Doctoral Programs

For the doctoral degree, 90 credits in addition to the bachelor’s or 60 credits in addition to the master’s degree are required. Usually, this means that 16 to 20 courses beyond the bachelor’s are needed, as specified by the adviser and the doctoral committee, in addition to residence and thesis requirements. Under the guidance of a thesis adviser, the student conducts advanced study and research. If a student chooses to do a thesis with a thesis adviser from another department, a Mechanical, Aerospace, and Nuclear Engineering Department faculty member must be appointed co-chair and the doctoral committee must contain at least two department faculty members. After approximately one year of full-time study, the student should have a research adviser and be advanced to doctoral student status. To attain this milestone a qualifying examination is required. When thesis research has begun and after approximately two years of full-time study, the candidacy examination is taken. At the completion of the research project and after the dissertation has been written, the student must defend the thesis in an open presentation to his or her committee. The degree awarded is the Doctor of Philosophy.
This degree is awarded under the auspices of the Office of Graduate Education when the thesis is directed toward making an original contribution to fundamental knowledge in a particular field or in an interdisciplinary field. A dissertation that is scholarly, creative, original, and publishable may deal also with the relation of a discipline to educational problems and objectives within the field.

Course Descriptions
Courses directly related to all Mechanical, Aerospace, Nuclear Engineering and Engineering Physics curricula are described in the Course Description section of this catalog under the department code MANE.

Engineering at Hartford

Chair: James C. McKim, Jr. (Interim)

Associate Chair: Ernesto Gutierrez-Miravete (Interim)

Department Home Page: http://www.rh.edu/engr/

Rensselaer at Hartford offers an engineering curriculum to accommodate the evolving needs of the engineer. The curriculum helps students establish and build on a solid theoretical base while allowing them to practice their skills. This blend of academic excellence and industrial experience creates a unique learning environment for engineering students at Rensselaer at Hartford. Degree programs are offered in Mechanical Engineering, Electrical Engineering, Computer and Systems Engineering, and Engineering Science together with certificate programs in Quality and Reliability Engineering, Systems Modeling and Analysis, and High Temperature Materials.

Engineering Degrees
Degrees are awarded in the following fields of engineering:

- **M.Eng. in Computer and Systems Engineering**
- **M.S. in Electrical Engineering**
- **M.S. in Engineering Science**
- **M.S. in Mechanical Engineering**

Candidates for the master’s degree must:

- Prepare a plan of study with their adviser and have it reviewed and approved by the chair of engineering no later than their fourth course
- Complete a plan of study with at least 30 credit hours beyond the bachelor’s degree with satisfactory grades. At least 18 of the total major credit hours presented toward the degree must have the suffix numbers 6000–6990 or 7000–7990.
- Complete all requirements within five years of admission.

Culminating Experience (Engineering Seminar)
The culminating experience is a requirement for the master’s degree in Connecticut. It may be fulfilled by any of the following:

- Submitting an engineering seminar paper (0 credit hours) in addition to the required 30 credit hours.
 Completing a six-credit-hour master’s thesis along with 24 credit hours of appropriate course work.
 Completing a three-credit-hour master’s project along with 27 credit hours of appropriate course work.

General Engineering Requirements

Students entering the engineering programs are expected to hold a Bachelor of Science degree. Students not holding a degree in one of the traditional engineering disciplines must have at least:

- Mathematics, through Ordinary Differential Equations (three terms or 12 credits)
- Physics (two terms)
- Chemistry and/or Engineering Materials (One term)
- Mechanics (One term)
- Electronics/Circuits (One term)

Students lacking one or more of these courses are expected to take corrective action before entering any of the engineering programs.

The Bachelor of Engineering Technology (BET) degree is not generally considered appropriate preparation for admission to master’s degrees and courses in engineering. Applicants with this degree may be required to do significant background repair and/or submit scores from the Graduate Record Examination Engineering test, along with the standard admissions credentials. Application forms for this test may be obtained from the Office of Admissions.

All students entering the engineering programs at Rensselaer at Hartford are expected to be familiar with one of the major higher level programming languages (Fortran, C, Pascal, etc.).

A limited number of elective courses outside a specific engineering discipline may be taken and credited toward an engineering degree. The student’s faculty adviser must approve these elective courses.

Electrical Engineering

The Electrical Engineering curriculum is designed for students who wish to focus their study in Digital Communications, Control Systems, and Digital Signal Processing.

A Bachelor of Science degree in Electrical Engineering is the desired background for admission to the program. Other students entering the program should have fulfilled the General Engineering Requirements noted above and the Electrical Engineering Background Requirements listed below.

Electrical Engineering Background Requirements

- Advanced Mathematics (i.e., Complex Variables, Laplace Transforms, Fourier Analysis, Probability) (One term)
- Digital Logic (One term)
- Electronics/Circuits (active or passive) (One additional term)
- Linear Systems or Feedback Systems (One term)
- Technical Design Elective (e.g., Communications Systems, Semiconductor Devices, Introduction to Microprocessors, Circuit Synthesis) (One term)

Students lacking any of the above courses must consult with their adviser to devise a plan for corrective action.
Electrical Engineering Program Requirements
The following must be included in a plan of study for the degree of Master of Science in Electrical Engineering:

■ At least 18 credit hours in 6000-level courses (or equivalent with approval of adviser)
■ At least 21 credit hours in ECSE courses or related technical work
■ A three-course specialization to provide depth in an approved technical area
■ Engineering Seminar

Specializations
From the courses currently available at Hartford, a three-course specialization can be constructed in any of the following areas:

■ Digital Communications
■ Control Systems
■ Digital Signal Processing
The student may propose other areas, but they are subject to adviser’s approval.

Computer and Systems Engineering
The Master of Engineering in Computer and Systems Engineering provides the student with the appropriate hardware and software tools needed in such critical areas as digital communications and signal processing, robotics and automation systems, computer communication networks, and software engineering.

Admission Requirements
Students should have received a B.S. degree in Electrical Engineering, Computer Engineering, or Computer Science. Students with a B.S. degree in another engineering discipline, Mathematics or Physics, are subject to the condition that the following essential prerequisites for their chosen area of specialization have been completed:

<table>
<thead>
<tr>
<th>Digital Communications and Signal Processing</th>
<th>Robotics and Automation Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE-2010 Electrical Circuits</td>
<td>ECSE-2010 Electrical Circuits</td>
</tr>
<tr>
<td>ECSE-2410 Signals and Systems</td>
<td>ECSE-2410 Signals and Systems</td>
</tr>
<tr>
<td>ECSE-2610 Computer Components and Operations</td>
<td>ECSE-2610 Computer Components and Operations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Communications Networks</th>
<th>Software Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE-2010 Electrical Circuits</td>
<td>CSCI-1100 Computer Science I</td>
</tr>
<tr>
<td>ECSE-2410 Signals and Systems</td>
<td>CSCI-2300 Data Structures and Algorithms</td>
</tr>
<tr>
<td>ECSE-2610 Computer Components and Operations</td>
<td>ECSE-2610 Computer Components and Operations</td>
</tr>
</tbody>
</table>
Computer and Systems Engineering Program Requirements
The following must be included in a plan of study for the degree of Master of Engineering in Computer and Systems Engineering:

- At least 18 credit hours in 6000-level courses (or equivalent with approval of adviser)
- At least 21 credit hours in ECSE courses or related technical work
- A three-course specialization to provide depth in an approved technical area
- Engineering Seminar

Specializations
From the courses currently available at Hartford, a three-course specialization can be constructed in any of the following areas.

- Digital Communications and Signal Processing
- Computer Communication Networks
- Robotics and Automation Systems
- Software Engineering

The student may propose other areas, but they are subject to adviser’s approval.

Preparatory courses do not apply toward the minimum 30 credit hours required for the Master of Engineering degree.

Engineering Science
The Engineering Science curriculum serves students whose educational needs do not correspond to the standard professional engineering curricula. It allows students to tailor courses of study to their particular requirements. Each student’s course of study is developed in consultation with the Chair to allow a strongly directed interdisciplinary approach.

The degree awarded in this area is not, nor is it intended to be, accredited for practice. Students entering the Engineering Science program are expected to have fulfilled the General Engineering Requirements noted above.

Mechanical Engineering
The Master of Science in Mechanical Engineering allows the student to increase his or her competence in a number of mechanical engineering subjects, or to specialize in depth in the areas of fluid mechanics, heat transfer, mechanical design, solid mechanics, or thermodynamics.

A Bachelor of Science degree in Mechanical Engineering is the desired background for admission to the program. Other students entering the program should have fulfilled the General Engineering Requirements noted above, and the Mechanical Engineering Background Requirements listed below.

Mechanical Engineering Background Requirements

- Chemistry (One additional term)
- Statics (One term)
- Dynamics (One term)
- Strength of Materials (One term)
■ Fluid Mechanics (One term)
■ Heat Transfer (One term)
■ Mechanisms (One term)
■ Machine Design (One term)
■ Thermodynamics (Two terms)

Students lacking any of the above courses must consult with their adviser to devise plans for corrective action.

Mechanical Engineering Program Requirements

A plan of study must include the following items.

- MEAE-4960 Numerical Analysis for Engineers
- MEAE-7010 Math of Engineering and Sciences

(These courses may be waived if the student is competent in the subject.)

- At least 18 credit hours in mechanical engineering courses at an advanced level (or equivalent with approval of adviser). All courses with the suffix numbers 6000–6990 and 7000–7900 apply.
- At least 21 credit hours in MEAE courses
- A minimum of 30 credit hours, including Engineering Seminar. A limited number of elective courses outside the area of mechanical engineering are permitted. However, the student’s adviser must approve these courses.

Graduate Certificate in Quality and Reliability Engineering

The Department of Engineering at Rensselaer at Hartford offers a Graduate Certificate in Quality and Reliability Engineering integrating technical skills with business knowledge. The production of reliable products requires processes operating under control. The purpose of quality engineering is to measure and improve process control to increase the reliability of products and services. The Graduate Certificate in Quality and Reliability Engineering is designed to develop skills in the application of quality engineering principles to enhance the performance of industrial and business systems. The program consists of three, 3-credit-hour courses which are available via distance delivery. Credit from all of the following required courses can later be applied towards a master’s degree.

- DSES-6110 Introduction to Applied Statistics
- DSES-6170 Management of Quality Processes and Reliability
- DSES-6230 Quality Control and Reliability

Graduate Certificate in Systems Modeling and Analysis

Simulation and other types of modeling tools create manageable representations of complex systems. These models enable managers and technical analysts to study the feasibility and cost-effectiveness of alternative management policies and system designs. Modern simulation software provides easy access to graphical and computational analyses, which enable extensive experimentation with real and proposed systems before resources are committed. These analyses provide the decision support tools needed to assure the reliability, functionality, and efficiency of all types of industrial systems.

This Graduate Certificate is designed to provide skills in the development and interpretation of simulation models of real-world systems. Discrete event models of industrial engineering and management science systems are emphasized. The Systems Modeling and Analysis Graduate Certificate Program requires three 3-credit-hour courses which are available via distance delivery. Credit from all of the following required courses can then be applied towards a master’s degree.
Materials used in the “hot zones” of propulsion and power generation systems must satisfy stringent demands for integrity and performance. Materials exposed to these extreme environments exhibit continuously evolving microstructures, and this must be accounted for during the component design stage of production.

Rensselaer offers a Certificate of Advanced Graduate Studies in High Temperature Materials designed to provide an understanding of the properties of high temperature alloys as well as skills in improving those properties by manipulating the material microstructure through processing.

The Certificate of Advanced Graduate Studies in High Temperature Materials Technology in Propulsion and Power Generation is awarded on successful completion of three graduate level courses. Academic credit from these courses can then be applied towards a Master of Science degree.

Professional Engineering

Professional Engineering seminar topics and preparatory programs for the Professional Engineering Exams are provided in our Engineering course schedules and Web site. The exam review courses for Part I (EIT) and II (PE) and Land Surveyor are held evenings for 10 to 12 weeks prior to the April and October state exams. Rensselaer at Hartford works closely with the State of Connecticut to provide testing schedule information as well as application requirements.

- Fundamentals of Engineering (EIT) Review Course
- Professional Engineering Review Courses (Mechanical, Electrical, and Civil)
- Land Surveyor Review Course
Interdisciplinary Programs and Research

Rensselaer has long understood that neither student career interests nor modern industry needs are easily pigeonholed into a single discipline. In fact, the discovery of new and more advanced technologies more often than not results from combining the knowledge of a variety of disciplines. Rensselaer is, therefore, resolved to become a leader in providing numerous opportunities for interdisciplinary study.

In keeping with this commitment, the School of Engineering has developed a variety of special programs that bridge one or more departments or even Institute schools. These include both degree and research programs that allow students to develop a breadth and depth of knowledge in more than one discipline. By their nature, these programs are highly flexible and often involve working in teams with faculty and students representing multiple disciplines.

In addition to opportunities in the School of Engineering described below, other interdisciplinary programs available at Rensselaer are listed in the Interdisciplinary Studies Index of this catalog and are described fully in the section pertaining to the associated Institute school or division.

Engineering Science

Chair: Kevin C. Craig

Rensselaer’s engineering science curriculum serves students whose educational desires do not correspond to the standard professional engineering curricula. While no B.S. degree is offered in engineering science, M.S. and Ph.D. degrees are awarded to students whose programs of study are truly multidisciplinary. However, since each student develops an individual program in consultation with a faculty adviser, the program provides the opportunity to tailor programs of study to specific needs.

Studies may be based on the sciences. For example, programs may concentrate on the application of engineering and scientific techniques to areas between technology and the humanities and social sciences. Students may also develop a program providing a liberal education based on engineering and involving a critical appreciation of the increasingly technical culture. Such courses of study may form the basis for premedical, prelaw, or prebusiness programs.

Faculty

Product Design and Innovation

This dual major program, which the Schools of Engineering and Humanities and Social Sciences offer jointly, satisfies the requirements for the Bachelor of Science programs in both Mechanical Engineering and Science, Technology, and Society (STS). Product Design and Innovation (PDI) prepares students to become innovative designers who will develop and design the advanced products and technologies needed in the future. Built around a design studio every semester, PDI combines the technical sophistication of Rensselaer’s engineering curriculum with the insight and vision of the humanities and social science disciplines in the STS curriculum.

The design studio that students take every semester is the PDI core, which gives them a hands-on opportunity to bring together the two major curricula. The engineering curriculum provides a fundamental education in engineering science through basic courses in engineering mechanics, engineering electronics, energy, materials, and manufacturing. The STS curriculum provides a fundamental education in the eco-
onomic, ethical, cultural, and political dimensions of product development and innovation, including numerous case studies of successes and failures that help students learn what it takes to be effective leaders of design teams. Through the design studios, students explore and develop their creativity while building a portfolio of design experiences continuously throughout all four years.

The design experiences range from larger systemic problems to smaller focused problems, so that students have broad exposure to different applications of design practice. Some fall and spring semester studios are taught as a sequence to give students experience with the design process from beginning to implementation. The studios also develop students’ skills in using computers and other advanced tools and techniques, as well as in drawing, visualizing, communicating, and working together.

PDI graduates are thus uniquely prepared to put their creativity to work as leaders of design and innovation, whether in a multinational business at the cutting-edge of the global market or in a smaller business that creates an unusual solution to a local problem. They are able to function effectively in the new situations and unfamiliar environments of a multicultural global society, to collaborate with diverse constituencies to analyze and formulate problems of varying complexities, and to work individually and in teams to develop truly innovative and powerful solutions to challenges affecting this country’s continued prosperity and social well-being. Programs corresponding to PDI are described in the School of Architecture and the Humanities and Social Sciences STS Department sections of this catalog.

Product Design and Innovation Curriculum

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH-2200</td>
<td>Design Studio I4</td>
</tr>
<tr>
<td>STSH-1110</td>
<td>Introduction to STS (First-Year Studies)4</td>
</tr>
<tr>
<td>MATH-1011</td>
<td>Calculus I ...4</td>
</tr>
<tr>
<td>ENGR-1500</td>
<td>Chemistry of Materials I4</td>
</tr>
<tr>
<td>ENGR-1200</td>
<td>Engineering Graphics and CAD1</td>
</tr>
<tr>
<td></td>
<td>...17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2020</td>
<td>PDI Studio II4</td>
</tr>
<tr>
<td>ENGR-1100</td>
<td>Introduction to Engineering Analysis4</td>
</tr>
<tr>
<td>MATH-1020</td>
<td>Calculus II ...4</td>
</tr>
<tr>
<td>ENGR-1600</td>
<td>Chemistry of Materials II4</td>
</tr>
<tr>
<td>ENGR-1300</td>
<td>Engineering Processes1</td>
</tr>
<tr>
<td></td>
<td>...17</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHSS-2500</td>
<td>Design Studio III4</td>
</tr>
<tr>
<td>STSS-2960</td>
<td>Design Culture and Society4</td>
</tr>
<tr>
<td>MATH-2400</td>
<td>Introduction to Differential Equations4</td>
</tr>
<tr>
<td>PHYS-1100</td>
<td>Physics I for Engineers4</td>
</tr>
<tr>
<td>CSCI-1190</td>
<td>Programming ...1</td>
</tr>
<tr>
<td></td>
<td>...17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR-2050</td>
<td>Intro to Engineering Design4</td>
</tr>
<tr>
<td>ENGR-2530</td>
<td>Strength of Materials4</td>
</tr>
<tr>
<td>ENGR-2090</td>
<td>Engineering Dynamics4</td>
</tr>
<tr>
<td>PHYS-1200</td>
<td>Physics II for Engineers4</td>
</tr>
<tr>
<td></td>
<td>...16</td>
</tr>
</tbody>
</table>

1 These courses may be taken in any order.

2 PDI II, V, VI, and GMP satisfy the mechanical engineering requirement for the concentration electives in Product Design and Innovation.

3 For PDI students, IHSS-2500 can be used as a substitute for the second-year requirement in the STS area option.
The Center for Composite Materials and Structures (CCMS) has been established to coordinate and promote composites-related activities in four academic areas—civil, materials, and mechanical engineering and chemistry. Composites research activities at Rensselaer cover many facets of the subject and include mechanics-related topics such as the micromechanical modeling of elastic, thermal, fatigue, and failure phenomena; residual stress analysis and process modeling; constitutive equations for polymeric composites and viscoelastic characterization; design methodologies and numerical implementation for ceramic matrix composites; and materials-related topics such as interfacial adhesion and models of fiber-matrix stress transfer; nanoscale fillers and fibers for reinforcement; mechanisms of damping in filled elastomers; fiber and matrix characterization; environmental interactions; high temperature creep; long-term properties prediction, matrix and organic precursor synthesis; and civil-aeronautical topics such as the use of composites for infrastructure construction and joint analysis. Materials of interest include all polymer, ceramic, and metal matrix composite systems.

For the past 20 years, Rensselaer has been a leader in the training of undergraduates with an exposure to composites. Undergraduates have designed, fabricated, and tested to specifications several all-composite gliders. As many as 70 juniors and seniors participate in the program in any given year. The third-generation glider, the RP-3, was successfully flight-tested recently.

Center for Composite Materials and Structures

Director: Sanford S. Sternstein

CCMS Home Page: http://www.eng.rpi.edu/WWW/Research/res_centers/ccms.html

The Center for Composite Materials and Structures (CCMS) has been established to coordinate and promote composites-related activities in four academic areas—civil, materials, and mechanical engineering and chemistry. Composites research activities at Rensselaer cover many facets of the subject and include mechanics-related topics such as the micromechanical modeling of elastic, thermal, fatigue, and failure phenomena; residual stress analysis and process modeling; constitutive equations for polymeric composites and viscoelastic characterization; design methodologies and numerical implementation for ceramic matrix composites; and materials-related topics such as interfacial adhesion and models of fiber-matrix stress transfer; nanoscale fillers and fibers for reinforcement; mechanisms of damping in filled elastomers; fiber and matrix characterization; environmental interactions; high temperature creep; long-term properties prediction, matrix and organic precursor synthesis; and civil-aeronautical topics such as the use of composites for infrastructure construction and joint analysis. Materials of interest include all polymer, ceramic, and metal matrix composite systems.

For the past 20 years, Rensselaer has been a leader in the training of undergraduates with an exposure to composites. Undergraduates have designed, fabricated, and tested to specifications several all-composite gliders. As many as 70 juniors and seniors participate in the program in any given year. The third-generation glider, the RP-3, was successfully flight-tested recently.

2 PDI II, V, VI, and GMP satisfy the mechanical engineering requirement for the concentration electives in Product Design and Innovation.

 Candidate courses include STSS-4350; STSS-4960; STSS-4960; STSH-4230; STSS-4110; STSS-4250; STSS-4310; STSS-4560; and STSS-4650.

5 This course satisfies the requirement for Professional Development II.

6 The STS Senior Project can be combined with the PDI Capstone Design Studio to make an 8-credit capstone studio project. Coordination should be done with your PDI advisor.
Courses covering all areas of composites from materials and processing to properties, micromechanics, and design are offered yearly. Joint activities with SCOREC (Scientific Computation Research Center) include the numerical implementation of advanced computational schemes for the modeling of fabrication processes, mechanical properties evaluation, and structural design and analysis. Interdisciplinary students are strongly encouraged at Rensselaer and are essential for studies in the composites field.

Affiliated Faculty

Civil Engineering: J. Fish, M.S. Shephard
Materials Engineering: P. Ajayan, R.H. Doremus, D.J. Duquette, W.B. Hillig, L. Schadler, R. Siegel, S.S. Sternstein
Mechanical Engineering: G. Dvorak, P. Hajela, H.J. Hagerup, E. Krempl
Chemistry: J.V. Crivello, L.V. Interrante, J.A. Moore

Center for Image Processing Research

Director: William A. Pearlman
Associate Director: John W. Woods
CIPR Home Page: http://www.cipr.rpi.edu

The Center for Image Processing Research (CIPR) conducts a range of research and academic programs in image and video processing. Faculty participants represent a number of academic disciplines and, together with their students, provide the nucleus for ongoing activities within CIPR. In addition to providing an intellectual focus for image-processing activities at Rensselaer, the objectives are to provide a positive impact on graduate and undergraduate programs, to support ongoing activities with a world-class infrastructure, and to enhance its reputation as one of the world’s premier image-processing research centers. Current CIPR research areas include image modeling, computer vision and image analysis, document analysis and processing, image and video enhancement and reconstruction, biomedical image processing, computer graphics, computational geometry, image and video compression and transmission, virtual video synthesis, visualization and display techniques, and multimedia systems. The CIPR has administrative authority over and shares infrastructure with the NSF Industry/University Center for Next Generation Video (CNGV) and the NSF Engineering Research Center for Subsurface Sensing and Imaging System (CenSSIS) at Rensselaer. These centers have some joint research programs with CIPR, but otherwise operate independently of CIPR.

Affiliated Faculty

Center for Infrastructure and Transportation Studies

Director: George F. List
Director of Research: William A. Wallace
Senior Research Associate: Donald N. Geoffroy
CITS Home Page: http://www.rpi.edu/dept/cits

The Center for Infrastructure and Transportation Studies (CITS) provides a focal point for campus research addressing the world’s infrastructure and transportation needs. CITS also assists in coordinating all related pedagogical initiatives. About 15 faculty across the Institute participate.

The Center’s research program focuses on five themes: intelligent transportation systems, information technology, deployment, and application, network analysis and control, asset management, and advanced materials. Each aspect of the life cycle for infrastructure and transportation systems is of interest—planning, analysis, design, maintenance, operation, preservation, restoration, and renewal. Common infrastructure focal points are roadways, bridges, and power distribution networks.

Projects currently under way include wireless ATIS systems, incident management systems, critical infrastructure interdependencies, investment planning for multimodal freight networks, capacity analyses for highway facilities, multilayer network modeling, and advanced concrete technologies. The pedagogical activities include course material development in the areas of intelligent transportation systems and asset management.

Affiliated Faculty

Center for Multiphase Research

Director: Michael Z. Podowski
CMR Home Page: http://www.ne.rpi.edu/cmr

In this country, Rensselaer’s interdisciplinary Center for Multiphase Research (CMR) is the premier research center of its kind. The CMR has assembled a large and dynamic group of scientists and engineers dedicated to exploring and exploiting new developments in every conceivable aspect of multiphase flow and heat transfer technology. The CMR coordinates the diverse activities of these researchers and facilitates the cross-disciplinary exchange of information as well as technology transfer to industry.

Multiphase flow occurs in any physical process or industrial system involving more than one phase (solids, liquids, and vapors). Multiphase flow and related heat transfer technology are the keys to increasing the productivity and efficiency of many American industries. Indeed, this technology underlies our understanding of crystal growth, foundry casting, high-power density electronic cooling, chemical processing, petroleum refining, and slurry and pneumatic transport. Multiphase technology also has basic applications to aircraft wing icing, deep-sea mining, aseptic food processing, pharmaceutical manufacturing, refrigeration and air conditioning, chemical and nuclear reactor safety, foam production, aerosols, particulate erosion, combustion, processing and propulsion in outer space, enhanced petroleum recovery and bioreactors. Moreover, there are many important defense applications for this technology.
Historically, multiphase flows have been analyzed empirically. As a result, these analyses necessarily included many uncertainties and inaccuracies. Thus, the design and operation of phase change equipment had to include large margins. Recent developments in supercomputing, symbolic manipulator algorithms, diagnostic instrumentation, and applied mathematics have driven revolutionary changes in scientists’ ability to understand and predict multiphase flow phenomena.

The research activities of the CMR involve faculty, staff, and graduate students of many backgrounds who work synergistically on relevant multiphase research. Some typical research projects are:

- Conducting crystal growth experiments in outer space.
- Developing state-of-the-art laser optical diagnostic system for measuring multidimensional phenomena.
- Developing CFD models of multiphase flows.
- Predicting critical heat flux (CHF) using first principle models.
- Understanding instability phenomena in various phase change systems.
- Investigating laser materials processing, thin film behavior, and ultrahigh boiling heat fluxes.
- Imaging interfacial structures in gas/liquid flows.
- Assessing the consequences of hypothetical nuclear reactor accidents.

The members of the center represent a broad spectrum of science and engineering disciplines and have access to a wide variety of equipment and computational power.

Affiliated Faculty

Center for Next Generation Video

Director: John W. Woods

CNGV Home Page: http://www.ecse.rpi.edu/CNGV

The Center for Next Generation Video (CNGV) is an NSF Industry-University Cooperative Research Center dedicated to advancement of the state-of-the-art in compression, transmission, reception, processing, and networking of digital video and multimedia. The Center is operated in partnership with the New Jersey Institute of Technology, with Rensselaer as its headquarters.

Center for Subsurface Sensing and Imaging Systems

Director: Badrinath Roysam

CenSSIS Home Page: http://www.ecse.rpi.edu/censsis

The Center for Subsurface Sensing and Imaging Systems (CenSSIS) is a National Science Foundation Engineering Research Center (NSF-ERC) that conducts multidisciplinary research on common solutions to diverse problems for sensing and imaging objects that are hidden under a surface. This is part of a larger center involving Northeastern University, Boston University, University of Puerto Rico at Mayagüez, and several affiliate institutions including The Woods Hole Oceanographic Institute, Memorial Sloan-Kettering Cancer Center, Massachusetts General Hospital, Idaho National Engineering and Environmental Laboratory, and Lawrence Livermore National Laboratory. Examples of applications include deep confi-
cal laser-scanning microscopy of minute subcellular objects, electrical impedance tomography of the human body and underground waste sites, retinal imaging, surgical planning for radiation treatment, and inspection of hidden defects in roads and bridges. These diverse applications are addressed using advanced computer algorithms for tomographic image reconstruction, image analysis, and computer vision. Some projects involve design and fabrication of working prototypes using advanced electronics, processors, and embedded algorithms. Graduate and undergraduate students participate on various projects at the center. Opportunities also exist for qualified K-12 students to participate in selected projects.

Affiliated Faculty