Inside Rensselaer
Volume 6, No. 12, August 31, 2012
   
*  
Mark Century

Batteries Made From World’s Thinnest Material Could Power Electric Cars

 
*

Batteries Made From World’s Thinnest Material Could Power Electric Cars

Engineering researchers at Rensselaer made a sheet of paper from the world’s thinnest material, graphene, and then zapped the paper with a laser or camera flash to blemish it with countless cracks, pores, and other imperfections. The result is a graphene anode material that can be charged or discharged 10 times faster than conventional graphite anodes used in today’s lithium (Li)-ion batteries.

Rechargeable Li-ion batteries are the industry standard for mobile phones, laptop and tablet computers, electric cars, and a range of other devices. While Li-ion batteries have a high energy density and can store large amounts of energy, they suffer from a low power density and are unable to quickly accept or discharge energy.

The Rensselaer research team, led by nanomaterials expert Nikhil Koratkar, sought to solve this problem and create a new battery that could hold large amounts of energy but also quickly accept and release this energy. Such an innovation could alleviate the need for the complex pairing of Li-ion batteries and supercapacitors in electric cars, and lead to simpler, better-performing automotive engines based solely on high-energy, high-power Li-ion batteries.

Koratkar and his team are confident their new battery, created by intentionally engineering defects in graphene, is a critical stepping stone on the path to realizing this grand goal. Such batteries could also significantly shorten the time it takes to charge portable electronic devices, from phones and laptops to medical devices used by paramedics and first responders.

“Li-ion battery technology is magnificent, but hampered by its limited power density and its inability to quickly accept or discharge large amounts of energy. By using our defect-engineered graphene paper in the battery architecture, I think we can help overcome this limitation,” said Koratkar, the John A. Clark and Edward T. Crossan Professor of Engineering. “We believe this discovery is ripe for commercialization, and can make a significant impact on the development of new batteries and electrical systems for electric automobiles and portable electronics applications.”

Koratkar and his team started investigating graphene as a possible replacement for the graphite used as the anode material in today’s Li-ion batteries. In previous studies, Li-ion batteries with graphite anodes exhibited good energy density but low power density, meaning they could not charge or discharge quickly. This slow charging and discharging was because lithium ions could only physically enter or exit the battery’s graphite anode from the edges, and slowly work their way across the length of the individual layers of graphene.

Koratkar said the process of making these new graphene paper anodes for Li-ion batteries can easily be scaled up to suit the needs of industry. The graphene paper can be made in essentially any size and shape, and the photo-thermal exposure by laser or camera flashes is an easy and inexpensive process to replicate. The researchers have filed for patent protection for their discovery. The next step for this research project is to pair the graphene anode material with a high-power cathode material to construct a full battery.

For more information on Koratkar’s research at Rensselaer, visit homepages.rpi.edu/~koratn/.

 

* * *
*
* *
Inside Rensselaer
Volume 6, Number 12, August 31, 2012
©2012 Rensselaer Polytechnic Institute
Return to front
Front Page
*
Rensselaer Polytechnic Institute | About RPI | Virtual Campus Tour | Academics | Research | Student Life | Admissions | News & Events