Inside Rensselaer
Enabling Computers To Mimic Human Creativity

A dealer in antique coins gets an offer to buy a beautiful bronze coin. The coin has an emperor’s head on one side and the date “544 B.C.” stamped on the other. The dealer examines the coin, but instead of buying it, he calls the police. Why?

Solving this “insight problem” requires creativity, a skill at which humans excel (the coin is a fake—“B.C.” and Arabic numerals did not exist at the time) and computers do not. Now, a new explanation of how humans solve problems creatively — including the mathematical formulations for facilitating the incorporation of the theory in artificial intelligence programs — provides a roadmap to building systems that perform like humans at the task.

Ron Sun, professor of cognitive science, said the new “Explicit-Implicit Interaction Theory,” recently introduced in an article in Psychological Review, could be used for future artificial intelligence.

“As a psychological theory, this theory pushes forward the field of research on creative problem solving and offers an explanation of the human mind and how we solve problems creatively.” — Ron Sun

“As a psychological theory, this theory pushes forward the field of research on creative problem solving and offers an explanation of the human mind and how we solve problems creatively,” Sun said. “But this model can also be used as the basis for creating future artificial intelligence programs that are good at solving problems creatively.”

The paper, titled “Incubation, Insight, and Creative Problem Solving: A Unified Theory and a Connectionist Model,” by Sun and Sébastien Hélie of the University of California, Santa Barbara, appeared in the July edition of Psychological Review. Discussion of the theory is accompanied by mathematical specifications for the “CLARION” cognitive architecture — a computer program developed by Sun’s research group to act like a cognitive system — as well as successful computer simulations of the theory.

In the paper, Sun and Hélie compare the performance of the CLARION model using “Explicit-Implicit Interaction” theory with results from previous human trials — including tests involving the coin question — and found results to be nearly identical in several aspects of problem solving.

In the tests involving the coin question, human subjects were given a chance to respond after being interrupted either to discuss their thought process or to work on an unrelated task. In that experiment, 35.6 percent of participants answered correctly after discussing their thinking, while 45.8 percent of participants answered correctly after working on another task.

In 5,000 runs of the CLARION program set for similar interruptions, CLARION answered correctly 35.3 percent of the time in the first instance, and 45.3 percent of the time in the second instance.

“The simulation data matches the human data very well,” said Sun.

Explicit-Implicit Interaction (EII) theory is the most recent advance on a well-regarded outline of creative problem solving known as “Stage Decomposition,” developed by Graham Wallas in his seminal 1926 book The Art of Thought. According to stage decomposition, humans go through four stages — preparation, incubation, insight (illumination), and verification — in solving problems creatively.

“EII unifies a lot of fragmentary pre-existing theories,” Sun said. “These pre-existing theories only account for some aspects of creative problem solving, but not in a unified way. EII unifies those fragments and provides a more coherent, more complete theory.”

To read the full release, go to

* * *
Send comments to:
Inside Rensselaer, Strategic Communications and External Relations
1000 Troy Building, 110 Eighth Street, Troy, N.Y. 12180 or to
Inside Rensselaer
Volume 5, Number 2, February 4, 2011
©2010 Rensselaer Polytechnic Institute
Front Page
Rensselaer Polytechnic Institute | About RPI | Virtual Campus Tour | Academics | Research | Student Life | Admissions | News & Events