Inside Rensselaer
Jonathan Dordick Fuming Zhang Robert Linhardt
Rensselaer Leads Effort To Replace Widely Used Blood Thinner
In early 2008, there was a frightening failure in drug safety processes. In just a few weeks, more than 100 Americans had died after being administered contaminated doses of the common blood thinner heparin. The contaminant, present in heparin manufactured in China, and discovered with the help of Rensselaer scientists, was so structurally similar to pure heparin that it was undetectable to all but the most sophisticated detection techniques.

The health crisis pointed to very large problems with the safety processes surrounding heparin, which is one of the most commonly administered drugs in American hospitals today. Most notably, it called worldwide attention to the risks posed by a product made nearly entirely of material from the intestines of foreign livestock in less stringently regulated overseas factories.

With a $4.6 million grant from the National Institutes of Health, research led by Rensselaer will make its important final steps toward the development of a safer, synthetic alternative to the current heparin. The researchers believe that kilogram quantities of the new drug could be developed in under five years.

“Our goal is to create a bioengineered heparin that is chemically and biologically equivalent to pharmaceutical heparin currently prepared from pig intestines,” said Jonathan Dordick, one of the lead researchers for the study, who is the Howard P. Isermann Professor of Chemical and Biological Engineering and director of the Center for Biotechnology and Interdisciplinary Studies (CBIS). “Our process will improve the safety and uniformity of heparin and prevent future contamination or adulteration of the important drug.”

Dordick will be joined by co-principal investigator and project director for the partnership grant Robert Linhardt, who is the Ann and John H. Broadbent Jr. ’59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer.

In August 2008, Linhardt announced that his team had constructed a milligram quantity of the purer, safer alternative — creating the first fully synthetic heparin, and the largest amount ever created in the laboratory. Now he joins Dordick and fellow principal investigators Research Associate Professor of Chemical and Biological Engineering Fuming Zhang; Associate Professor Jian Liu from the University of North Carolina; and Professor Shaker Mousa from Albany College of Pharmacy, to scale up their capacity to manufacture the drug from a milligram to a kilogram — a millionfold increase. A kilogram quantity of the drug would provide a strong foundation for the production of the millions of doses of the drug that would be required each year, according to the researchers.

“We believe a replacement for the currently available heparin is truly within our grasp,” Linhardt said. “Some of the most important priorities of the research from here will be to create a simple and cost-effective process that can be easily replicated to produce a bioengineered, non-animal heparin at scales and cost sufficient to satisfy the therapeutic needs in the U.S.”

For more information on heparin research visit: http://www-heparin.rpi.edu/.
* * *
*
*
Send comments to:
Inside Rensselaer, Strategic Communications and External Relations
1000 Troy Building, 110 Eighth Street, Troy, N.Y. 12180 or to leibat@rpi.edu.
*
Inside Rensselaer
Volume 3, Number 10, October 9, 2009
©2009 Rensselaer Polytechnic Institute
Front Page
*
Rensselaer Polytechnic Institute | About RPI | Virtual Campus Tour | Academics | Research | Student Life | Admissions | News & Events